What causes the Ninject.Activation.IRequest Target property to be null - ninject

Probably a simple question, but I did not find anything in the documentation or on SO that directly answers it.
I had to work with the Ninject When(Func<IRequest, bool> condition) extension method for the first time, and got hung up for a bit with null object exceptions. I figured out that the IRequest.Target property is sometimes null and I've seen some other examples using When that check for a null Target as well.
I'm curious about the conditions under which Ninject executes the callback without having a value for Target. When creating a binding of the form
Bind<T1>()
.To<T2>
.When(r => SomeTest(r.Target));
I initially and erroneously assumed that there would always be a valid Target of type T1 when the binding was being executed.

It is null for the root object because there is no target in this case. (kernel.Get<MyCompositionRoot>())

Related

Null conditional operator not working (shows "invoke is not a member of xxx")

I can't seem to find anyone else having this same issue. I have seen that you can use null-conditional operators in VB.NET. E.g.
SendNews?.Invoke("Just in: A newsworthy item...")
However, I'm getting "invoke is not a member of SendNews"
I have tried setting "Option Infer On" but still getting this error.
Any ideas? (using .net 4.6.1)
The null conditional operator is used in place of a null check. For instance, instead of this:
If SendNews IsNot Nothing Then
SendNews.Invoke("...")
End If
You can shorten it to this:
SendNews?.Invoke("...")
But, that's all it does. It does nothing to check if the object actually contains the members being accessed. If you are using late binding (Dim SendNews As Object with Option Strict Off, the rough equivalent of using dynamic in C#), the null conditional operator will not skip the method call if it doesn't exist on the object. It will still throw the same exception as it would have otherwise. Currently, the only way to check if a late-bound object contains a particular method is to catch and ignore the exception or to look for it, by string name, with reflection.

LINQ to Entities does not recognize the method [Type] GetValue[Type]

I've a simple class like this:
Public Class CalculationParameter{
public Long TariffId{get;set;}
}
In a workflow activity, I've an Assign like this:
(From tariffDetail In db.Context.TariffDetails
Where tariffDetial.TariffId = calculationParameter.TariffId).FirstOrDefault()
Dto is passed to Activity as an Input Argument.
It raise following error and I'm wondering how to assign Id. Any Idea?
LINQ to Entities does not recognize the method 'Int64
GetValue[Int64](System.Activities.LocationReference)' method, and this
method cannot be translated into a store expression.
How can I assign the calculationParameter.TariffId to tariffDetial.TariffId?!
UPDATE:
Screen shot attached shows that how I'm trying to assign calculationParameter.TariffId to tariffDetail.TariffId (car.Id = Dto.Id) and the query result should assign to CurrentTrafficDetail object.
Here's your problem. I don't know if there is a solution to it.
As you said in a (now deleted, unfortunately necessitating that I answer) comment, the exception you're getting is
LINQ to Entities does not recognize the method Int64 GetValue[Int64](System.Activities.LocationReference) method, and this method cannot be translated into a store expression.
in your Linq query, calculationParameter is a Variable defined on the workflow. That Variable is actually an instance that extends the type System.Activities.LocationReference and NOT CalculationParameter.
Normally, when the workflow executes, the LocationReference holds all the information it needs to find the value which is assigned to it. That value isn't retrieved until the last possible moment. At runtime, the process of retrieval (getting the executing context, getting the value, converting it to the expected type) is managed by the workflow.
However, when you introduce Linq into the mix, we have the issue you are experiencing. As you may or may not know, your expression gets compiled into the extension method version of the same.
(From tariffDetail In db.Context.TariffDetails
Where tariffDetial.TariffId = calculationParameter.TariffId)
.FirstOrDefault()
is compiled to
db.Context.TariffDetails
.Where(x => x.TariffId = calculationParameter.TariffId)
.FirstOrDefault();
When this executes, L2E doesn't actually execute this code. It gets interpreted and converted into a SQL query which is executed against the database.
As the interpreter isn't omniscient, there are a well defined set of limitations on what methods you can use in a L2S query.
Unfortunately for you, getting the current value of a LocationReference is not one of them.
TL:DR You cannot do this.
As for workarounds, the only thing I think you can do is create a series of extension methods on your data context type or add methods to your CalculationParameter class that you can call from within the Expression Editor. You can create your Linq to Entities queries within these methods, as all types will already have been dereferenced by the workflow runtime, which means you won't have to worry about the L2E interpreter choking on LocationReferences.
*Edit: A workaround can be found here (thanks to Slauma who mentioned this in a comment on the question)

Why does resolveBinding() return null even though I setResolveBindings(true) on my ASTParser?

I am writing an Eclipse plug-in that uses JDT AST's ASTParser to parse a method. I am looking within that method for the creation of a particular type of object.
When I find a ClassInstanceCreation, I call getType() on it to see what type is being instantiated. I want to be sure that the fully-resolved type being dealt with there is the one I think it is, so I tell the resultant Type object to resolveBinding(). I get null back even though there are no compilation errors and even though I called setResolveBindings(true) on my ASTParser. I gave my ASTParser (via setSource()) the ICompilationUnit that contains my method, so the parser has access to the entire workspace context.
final IMethod method = ...;
final ASTParser parser = ASTParser.newParser(AST.JLS3);
parser.setResolveBindings(true);
parser.setSource(method.getCompilationUnit());
parser.setSourceRange(method.getSourceRange().getOffset(), method.getSourceRange().getLength());
parser.setKind(ASTParser.K_CLASS_BODY_DECLARATIONS);
final TypeDeclaration astRoot = (TypeDeclaration) parser.createAST(null);
final ClassInstanceCreation classInstanceCreation = walkAstAndFindMyExpression(astRoot);
final Type instantiatedType = classInstanceCreation.getType();
System.out.println("BINDING: " + instantiatedType.resolveBinding());
Why does resolveBinding() return null? How can I get the binding information?
Tucked away at the bottom of the overview of ASTParser.setKind(), carefully hidden from people troubleshooting resolveBinding() and setResolveBindings(), is the statement
Binding information is only computed when kind is K_COMPILATION_UNIT.
(from the online Javadoc)
I don't understand offhand why this would be the case, but it does seem to point pretty clearly at what needs to be different!

Is returning null bad design? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
I've heard some voices saying that checking for a returned null value from methods is bad design. I would like to hear some reasons for this.
pseudocode:
variable x = object.method()
if (x is null) do something
The rationale behind not returning null is that you do not have to check for it and hence your code does not need to follow a different path based on the return value. You might want to check out the Null Object Pattern which provides more information on this.
For example, if I were to define a method in Java that returned a Collection I would typically prefer to return an empty collection (i.e. Collections.emptyList()) rather than null as it means my client code is cleaner; e.g.
Collection<? extends Item> c = getItems(); // Will never return null.
for (Item item : c) { // Will not enter the loop if c is empty.
// Process item.
}
... which is cleaner than:
Collection<? extends Item> c = getItems(); // Could potentially return null.
// Two possible code paths now so harder to test.
if (c != null) {
for (Item item : c) {
// Process item.
}
}
Here's the reason.
In Clean Code by Robert Martin he writes that returning null is bad design when you can instead return, say, empty array. Since expected result is an array, why not? It'll enable you to iterate over result without any extra conditions. If it's an integer, maybe 0 will suffice, if it's a hash, empty hash. etc.
The premise is to not force calling code to immediately handle issues. Calling code may not want to concern itself with them. That's also why in many cases exceptions is better than nil.
Good uses of returning null:
If null is a valid functional result, for example: FindFirstObjectThatNeedsProcessing() can return null if not found and the caller should check accordingly.
Bad uses: Trying to replace or hide exceptional situations such as:
catch(...) and return null
API dependency initialization failed
Out of disk space
Invalid input parameters (programming error, inputs must be sanitized by the caller)
etc
In those cases throwing an exception is more adequate since:
A null return value provides no meaningful error info
The immediate caller most likely cannot handle the error condition
There is no guarantee that the caller is checking for null results
However, Exceptions should not be used to handle normal program operation conditions such as:
Invalid username/password (or any user-provided inputs)
Breaking loops or as non-local gotos
Yes, returning NULL is a terrible design, in object-oriented world. In a nutshell, NULL usage leads to:
ad-hoc error handling (instead of exceptions)
ambiguous semantic
slow instead of fast failing
computer thinking instead of object thinking
mutable and incomplete objects
Check this blog post for a detailed explanation: http://www.yegor256.com/2014/05/13/why-null-is-bad.html. More in my book Elegant Objects, Section 4.1.
Who says this is bad design?
Checking for nulls is a common practice, even encouraged, otherwise you run the risk of NullReferenceExceptions everywhere. Its better to handle the error gracefully than throw exceptions when you don't need to.
Based on what you've said so far, I think there's not enough information.
Returning null from a CreateWidget()method seems bad.
Returning null from a FindFooInBar() method seems fine.
Its inventor says it is a billion dollar mistake!
It depends on the language you're using. If you're in a language like C# where the idiomatic way of indicating the lack of a value is to return null, then returning null is a good design if you don't have a value. Alternatively, in languages such as Haskell which idiomatically use the Maybe monad for this case, then returning null would be a bad design (if it were even possible).
If you read all the answers it becomes clear the answer to this question depends on the kind of method.
Firstly, when something exceptional happens (IOproblem etc), logically exceptions are thrown. When exactly something is exceptional is probably something for a different topic..
Whenever a method is expected to possibly have no results there are two categories:
If it is possible to return a neutral value, do so.
Empty enumrables, strings etc are good examples
If such a neutral value does not exist, null should be returned.
As mentioned, the method is assumed to possibly have no result, so it is not exceptional, hence should not throw an exception. A neutral value is not possible (for example: 0 is not especially a neutral result, depending on the program)
Untill we have an official way to denote that a function can or cannot return null, I try to have a naming convention to denote so.
Just like you have the TrySomething() convention for methods that are expected to fail, I often name my methods SafeSomething() when the method returns a neutral result instead of null.
I'm not fully ok with the name yet, but couldn't come up with anything better. So I'm running with that for now.
I have a convention in this area that served me well
For single item queries:
Create... returns a new instance, or throws
Get... returns an expected existing instance, or throws
GetOrCreate... returns an existing instance, or new instance if none exists, or throws
Find... returns an existing instance, if it exists, or null
For collection queries:
Get... always returns a collection, which is empty if no matching[1] items are found
[1] given some criteria, explicit or implicit, given in the function name or as parameters.
Exceptions are for exceptional circumstances.
If your function is intended to find an attribute associated with a given object, and that object does has no such attribute, it may be appropriate to return null. If the object does not exist, throwing an exception may be more appropriate. If the function is meant to return a list of attributes, and there are none to return, returning an empty list makes sense - you're returning all zero attributes.
It's not necessarily a bad design - as with so many design decisions, it depends.
If the result of the method is something that would not have a good result in normal use, returning null is fine:
object x = GetObjectFromCache(); // return null if it's not in the cache
If there really should always be a non-null result, then it might be better to throw an exception:
try {
Controller c = GetController(); // the controller object is central to
// the application. If we don't get one,
// we're fubar
// it's likely that it's OK to not have the try/catch since you won't
// be able to really handle the problem here
}
catch /* ... */ {
}
It's fine to return null if doing so is meaningful in some way:
public String getEmployeeName(int id){ ..}
In a case like this it's meaningful to return null if the id doesn't correspond to an existing entity, as it allows you to distinguish the case where no match was found from a legitimate error.
People may think this is bad because it can be abused as a "special" return value that indicates an error condition, which is not so good, a bit like returning error codes from a function but confusing because the user has to check the return for null, instead of catching the appropriate exceptions, e.g.
public Integer getId(...){
try{ ... ; return id; }
catch(Exception e){ return null;}
}
For certain scenarios, you want to notice a failure as soon as it happens.
Checking against NULL and not asserting (for programmer errors) or throwing (for user or caller errors) in the failure case can mean that later crashes are harder to track down, because the original odd case wasn't found.
Moreover, ignoring errors can lead to security exploits. Perhaps the null-ness came from the fact that a buffer was overwritten or the like. Now, you are not crashing, which means the exploiter has a chance to execute in your code.
What alternatives do you see to returning null?
I see two cases:
findAnItem( id ). What should this do if the item is not found
In this case we could: Return Null or throw a (checked) exception (or maybe create an item and return it)
listItemsMatching (criteria) what should this return if nothing is found?
In this case we could return Null, return an empty list or throw an Exception.
I believe that return null may be less good than the alternatives becasue it requires the client to remember to check for null, programmers forget and code
x = find();
x.getField(); // bang null pointer exception
In Java, throwing a checked exception, RecordNotFoundException, allows the compiler to remind the client to deal with case.
I find that searches returning empty lists can be quite convenient - just populate the display with all the contents of the list, oh it's empty, the code "just works".
Make them call another method after the fact to figure out if the previous call was null. ;-) Hey, it was good enough for JDBC
Well, it sure depends of the purpose of the method ... Sometimes, a better choice would be to throw an exception. It all depends from case to case.
Sometimes, returning NULL is the right thing to do, but specifically when you're dealing with sequences of different sorts (arrays, lists, strings, what-have-you) it is probably better to return a zero-length sequence, as it leads to shorter and hopefully more understandable code, while not taking much more writing on API implementer's part.
The base idea behind this thread is to program defensively. That is, code against the unexpected.
There is an array of different replies:
Adamski suggests looking at Null Object Pattern, with that reply being up voted for that suggestion.
Michael Valenty also suggests a naming convention to tell the developer what may be expected.
ZeroConcept suggests a proper use of Exception, if that is the reason for the NULL.
And others.
If we make the "rule" that we always want to do defensive programming then we can see that these suggestions are valid.
But we have 2 development scenarios.
Classes "authored" by a developer: The Author
Classes "consumed" by another(maybe) developer: the Developer
Regardless of whether a class returns NULL for methods with a return value or not,
the Developer will need to test if the object is valid.
If the developer cannot do this, then that Class/method is not deterministic.
That is, if the "method call" to get the object does not do what it "advertises" (eg getEmployee) it has broken the contract.
As an author of a class, I always want to be as kind and defensive ( and deterministic) when creating a method.
So given that either NULL or the NULL OBJECT (eg if(employee as NullEmployee.ISVALID)) needs to be checked
and that may need to happen with a collection of Employees, then the null object approach is the better approach.
But I also like Michael Valenty's suggestion of naming the method that MUST return null eg getEmployeeOrNull.
An Author who throws an exception is removing the choice for the developer to test the object's validity,
which is very bad on a collection of objects, and forces the developer into exception handling
when branching their consuming code.
As a developer consuming the class, I hope the author gives me the ability to avoid or program for the null situation
that their class/methods may be faced with.
So as a developer I would program defensively against NULL from a method.
If the author has given me a contract that always returns a object (NULL OBJECT always does)
and that object has a method/property by which to test the validity of the object,
then I would use that method/property to continue using the object, else the object is not valid
and I cannot use it.
Bottom line is that the Author of the Class/Methods must provide mechanisms
that a Developer can use in their defensive programming. That is, a clearer intention of the method.
The Developer should always use defensive programming to test the validity of the objects returned
from another class/method.
regards
GregJF
Other options to this, are:
returning some value that indicates success or not (or type of an error), but if you just need boolean value that will indicate success / fail, returning null for failure, and an object for success wouldn't be less correct, then returning true/false and getting the object through parameter.
Other approach would to to use exception to indicates failures, but here - there are actually many more voices, that say this is a BAD practice (as using exceptions may be convenient but has many disadvantages).
So I personally don't see anything bad in returning null as indication that something went wrong, and checking it later (to actually know if you have succeeded or not). Also, blindly thinking that your method will not return NULL, and then base your code on it, may lead to other, sometimes hard to find, errors (although in most cases it will just crash your system :), as you will reference to 0x00000000 sooner or later).
Unintended null functions can arise during the development of a complex programs, and like dead code, such occurrences indicate serious flaws in program structures.
A null function or method is often used as the default behavior of a revectorable function or overrideable method in an object framework.
Null_function #wikipedia
If the code is something like:
command = get_something_to_do()
if command: # if not Null
command.execute()
If you have a dummy object whose execute() method does nothing, and you return that instead of Null in the appropriate cases, you don't have to check for the Null case and can instead just do:
get_something_to_do().execute()
So, here the issue is not between checking for NULL vs. an exception, but is instead between the caller having to handle special non-cases differently (in whatever way) or not.
For my use case I needed to return a Map from method and then looking for a specific key. But if I return an empty Map, then it will lead to NullPointerException and then it wont be much different returning null instead of an empty Map.
But from Java8 onward we could use Optional. The above is the very reason Optional concept was introduced.
G'day,
Returning NULL when you are unable to create a new object is standard practise for many APIs.
Why the hell it's bad design I have no idea.
Edit: This is true of languages where you don't have exceptions such as C where it has been the convention for many years.
HTH
'Avahappy,

How to I pass a checkbox value by reference with CLI?

I have a GUI app written in C++/CLI which has a load of configurable options. I have some overloaded functions which grab values from my data source and I'd like to connect my options to those values.
So here's a couple of data retrievers:
bool GetConfigSingle(long paramToGet, String^% str, char* debug, long debugLength);
bool GetConfigSingle(long paramToGet, bool^% v_value, char* debug, long debugLength);
I was hoping to pass in the checkbox's Checked getter/setter as follows:
result = m_dataSource->GetConfigSingle(CONFIG_OPTION1, this->myOption->Checked, debug, debugLen);
...but for some reason I get an odd compiler error which suggests the Checked value isn't being passed as I'd expect:
1>.\DataInterface.cpp(825) : error C2664: 'bool DataInterface::GetConfigSingle(long,System::String ^%, char*, long)' : cannot convert parameter 2 from 'bool' to 'System::String ^%'
Previously this code passed the checkbox in and modified the values itself, but I'm keen to break the dependency our data collection currently has on windows forms.
So what am I missing here?
[Edit] I've filled out the function definitions as they originally were to avoid confusion - my attempt to reduce the irrelevent information failed.
I'm fairly certain that the CheckBox getter / setter returns a bool.
Figured I'd clarify my comments from above and make it a "real" answer...
When you call Checked, what you're getting back as a return value is a bool that represents the current state of the CheckBox. It is not, however, a reference to the actual data member that holds the CheckBox's state. In fact, a properly encapsulated class shouldn't give access to it. Furthermore, since Checked returns a bool by value, that bool is a temporary object that doesn't necessarily exist by the time GetCongigSingle is called.
This leaves you with several options. Either pass the bools by value, and later set the CheckBox's state, or pass the CheckBox itself by reference and "check" it wherever you want.
The two overload of the method GetConfigSingleFile that you have mentioned both take two arguments whereas you are passing 4 arguments to the method. Are there any default arguments? If yes, can you please reproduce the original method declarations?
Most probably, the 4 argument overload of this method is expecting a String^% as the 2nd argument. This is what the compiler is suggesting anyway. But if we can have a look at the method declarations that could help diagnosing the problem.
This isn't an answer to my question, but worth being aware of - apparently there's a quirk in passing properties by reference.