What is the use of entity's detach-method? - entity

At the moment, I'm learning more about ORM and entity states and lifecycles.
I understand what a detached entity is and how an entity can get into detached state.
However, one thing I really don't understand:
What is the use of the detach()-method offered by an entity-manager?
I mean it's one thing for an entity to become detached e.g. after serialization/deserialization.
But why would one want an entity to become detached by explicitly calling the detach()-Method?
Does anyone have some examples of usefull scenarios?

It saves resources, so if you're going to have entities that are being used in a read only situation, you can detach them.

Related

Retrieve all unsaved (detached) entities

I am creating new entities but leaving them detached because I want to attach and save them later.
manager.createEntity("Employee", null, EntityState.Detached)
How can I retrieve all the added but detached entities from my entity manager? That is the entities I added that are in the cache but have not been saved?
You can't ask an EntityManager for detached entities because they are ... detached.
"Detached" means they don't belong to an EntityManager.
It is generally not a good idea to be modifying detached entities. You'll discover they don't behave like attached entities. For example, none of their navigation properties work ... for the simple reason that navigation properties look for related entities in the same EntityManager and this detached entity doesn't have an EntityManager.
I think you need to explain what motivated you to create these entities in a detached state. Why not leave them as "Added" (the default state)?
Perhaps you're worried about saving them prematurely? We can talk about how to guard against that.
Perhaps you're creating them but don't really want to save them until the user has made at least ONE change? We can talk about patterns to cover that.

best practice for a function which interacts with a database

Say I have a User object, which is generated by a Usermapper. The User object does not know anything about the database/repository in use (which I believe to be good design).
When creating a User, I only want it to have it filled by the mapper with the most trivial things e.g. Name, address etc. However after object instantiation I might have a method userX.getTotalDebt(), getTotalDebt() would need to reconnect to the database , because I don't want this relatively expensive operation to be done for every User instantiation (multiple tables needed etc). If I'd simply insert some sql in the getTotalDebt() or a dependency back to the Mapper where the coupledness is growing tight very fast.
There is an obvious good/best practice for this, because it's a situation arises often, however I can't find it or I'm looking at this problem totally from a wrong angle.
Say I have a User object, which is generated by a Usermapper. The User object does not know anything about the database/repository in use (which I believe to be good design).
They are often referred to as POCOs (Plain Old CLR Objects).
When creating a User I only want it to have it filled by the mapper with the most trivial things e.g. Name, address etc.
There are several OR/M layers which can achieve this. Use either nhibernate or Entity Framework 4.1 Code First.
I might have a method userX.getTotalDebt(), getTotalDebt() would need to reconnect to the database
Then it's not a poco anymore. Although it is possible using a transparent proxy. Both EF and nhibernate supports this and it's called Lazy Loading.
There is an obvious good/best practice for this, because it's a situation arises often, however I can't find it or I'm looking at this problem totally from a wrong angle
I usually keep my objects dumb and disconnected. I use the Repository pattern (even if I use nhibernate or another orm) since it makes my classes testable.
I either use the repository classes directly or create a service class which contains all logic. It depends on how complex my application is.

FluentNHibernate Unit Of Work / Repository Design Pattern Questions

I think I am at a impasse here. I have an application I built from scratch using FluentNHibernate (ORM) / SQLite (file db). I have decided to implement the Unit of Work and Repository Design pattern. I am at a point where I need to think about the end game, which will start as a WPF windows app (using MVVM) and eventually implement web services / ASP.Net as UI.
Now I already created domain objects (entities) for ORM. And now I don't know how should I use it outside of ORM. Questions about it include:
Should I use ORM entity objects directly as models in MVVM? If yes, do I put business logic (such as certain values must be positive and be greater than another Property) in those entity objects? It is certainly the simpler approach, and one I am leaning right now. However, will there be gotchas that would trash this plan?
If the answer above is no, do I then create a new set of classes to implement business logic and use those as Models in MVVM? How would I deal with the transition between model objects and entity objects? I guess a type converter implementation would work well here.
To answer the first part of your question, yes your business logic and validation should go in your entities. The point of NHibernate is to let you design your entities to be persistence ignorant. That means that you should, whenever possible, be designing your entities as you would if you didn't care about persistence. This isn't entirely feasible as you'll soon find out (you'll need to make your properties virtual in order to support lazy loading and if you want to use NHibernate Validator you'll be decorating your properties with validation attributes), but for the most part NHibernate does a good job of staying out of your way.
As for whether to use your entities as the models, you'll get mixed reviews on that. Ideally, you would create separate viewmodel classes and map from your entities to the viewmodel so that your views will only access to the bare minimum of information they need. This also goes a long way in preventing N+1 access issues. However, doing so is often a huge pain. Granted, there are tools like AutoMapper that will make it easier from transposing your entity properties to a viewmodel.

NHibernate, DTOs and NonUniqueObjectException

We're using the DTO pattern to marshal our domain objects from the service layer into our repository, and then down to the database via NHibernate.
I've run into an issue whereby I pull a DTO out of the repository (e.g. CustomerDTO) and then convert it into the domain object (Customer) in my service layer. I then try and save a new object back (e.g. SalesOrder) which contains the same Customer object. This is in turn converted to a SalesOrderDTO (and CustomerDTO) for pushing into the repository.
NHibernate does not like this- it complains that the CustomerDTO is a duplicate record. I'm assuming that this is because it pulled out the first CustomerDTO in the same session and because the returning has been converted back and forth it cannot recognise this as the same object.
Am I stuck here or is there a way around this?
Thanks
James
You can re-attach an object to a session in NHibernate by using Lock - e.g.
_session.Lock(myDetachedObject, NHibernate.LockMode.None);
which may or may not help depending on exactly what is happening here. On a side note, using DTO's with NHibernate is not the most common practice, the fact that NHibernate (mostly) supports persistence ignorance means that typically DTO's aren't as widely used as with some other ORM frameworks.
It's really about how NHibernate session works. So if you within a session pull an instance of your CustomerDTO and then after a while you should get the same CustomerDTO (say by primary key) - you actually will get reference to the very same object like you did in your first retrieval.
So what you do is that you either merge the objects by calling session.Merge or you ask your session for the object by calling session.Get(primaryKey) do your updates and flush the session.
However as suggested by Steve - this is not usually what you do - you really want to get your domain object from the datastore and use DTOs (if neede) for transferring the data to UI, webservice whatever...
As others have noted, implementing Equals and GetHashCode is a step in the right direction. Also look into NHibernate's support for the "attach" OR/M idiom.
You also have the nosetter.camelcase option at your disposal: http://davybrion.com/blog/2009/03/entities-required-properties-and-properties-that-shouldnt-be-modified/
Furthermore, I'd like to encourage you not to be dissuaded by the lack of information out there online. It doesn't mean you're crazy, or doing things wrong. It just means you're working in an edge case. Unfortunately the biggest consumers of libraries like NHibernate are smallish in-house and/or web apps, where there exists the freedom to lean all your persistence needs against a single database. In reality, there are many exceptions to this rule.
For example, I'm currently working on a commercial desktop app where one of my domain objects has its data spread between a SQL CE database and image files on disk. Unfortunately NHibernate can only help me with the SQL CE persistence. I'm forced to use a sort of "Double Mapping" (see Martin Fowler's "Patterns of Enterprise Application Architecture") map my domain model through a repository layer that knows what data goes to NHibernate and what to disk.
It happens. It's a real need. Sometimes an apparent lack in a tool indicates you're taking a bad approach. But sometimes the truth is that you just truly are in an edge case, and need to build out some of these patterns for yourself to get it done.
I'm assuming that this is because it
pulled out the first CustomerDTO in
the same session and because the
returning has been converted back and
forth it cannot recognise this as the
same object.
You are right. Hibernate can't. Consider implementing Equals and Hashcode to fix this. I think a re-attach may only work if you haven't loaded the object within this session.

Should entities have behavior or not?

Should entities have behavior? or not?
Why or why not?
If not, does that violate Encapsulation?
If your entities do not have behavior, then you are not writing object-oriented code. If everything is done with getters and setters and no other behavior, you're writing procedural code.
A lot of shops say they're practicing SOA when they keep their entities dumb. Their justification is that the data structure rarely changes, but the business logic does. This is a fallacy. There are plenty of patterns to deal with this problem, and they don't involve reducing everything to bags of getters and setters.
Entities should not have behavior. They represent data and data itself is passive.
I am currently working on a legacy project that has included behavior in entities and it is a nightmare, code that no one wants to touch.
You can read more on my blog post: Object-Oriented Anti-Pattern - Data Objects with Behavior .
[Preview] Object-Oriented Anti-Pattern - Data Objects with Behavior:
Attributes and Behavior
Objects are made up of attributes and behavior but Data Objects by definition represent only data and hence can have only attributes. Books, Movies, Files, even IO Streams do not have behavior. A book has a title but it does not know how to read. A movie has actors but it does not know how to play. A file has content but it does not know how to delete. A stream has content but it does not know how to open/close or stop. These are all examples of Data Objects that have attributes but do not have behavior. As such, they should be treated as dumb data objects and we as software engineers should not force behavior upon them.
Passing Around Data Instead of Behavior
Data Objects are moved around through different execution environments but behavior should be encapsulated and is usually pertinent only to one environment. In any application data is passed around, parsed, manipulated, persisted, retrieved, serialized, deserialized, and so on. An entity for example usually passes from the hibernate layer, to the service layer, to the frontend layer, and back again. In a distributed system it might pass through several pipes, queues, caches and end up in a new execution context. Attributes can apply to all three layers, but particular behavior such as save, parse, serialize only make sense in individual layers. Therefore, adding behavior to data objects violates encapsulation, modularization and even security principles.
Code written like this:
book.Write();
book.Print();
book.Publish();
book.Buy();
book.Open();
book.Read();
book.Highlight();
book.Bookmark();
book.GetRelatedBooks();
can be refactored like so:
Book book = author.WriteBook();
printer.Print(book);
publisher.Publish(book);
customer.Buy(book);
reader = new BookReader();
reader.Open(Book);
reader.Read();
reader.Highlight();
reader.Bookmark();
librarian.GetRelatedBooks(book);
What a difference natural object-oriented modeling can make! We went from a single monstrous Book class to six separate classes, each of them responsible for their own individual behavior.
This makes the code:
easier to read and understand because it is more natural
easier to update because the functionality is contained in smaller encapsulated classes
more flexible because we can easily substitute one or more of the six individual classes with overridden versions.
easier to test because the functionality is separated, and easier to mock
It depends on what kind of entity they are -- but the term "entity" implies, to me at least, business entities, in which case they should have behavior.
A "Business Entity" is a modeling of a real world object, and it should encapsulate all of the business logic (behavior) and properties/data that the object representation has in the context of your software.
If you're strictly following MVC, your model (entities) won't have any inherent behavior. I do however include whatever helper methods allow the easiest management of the entities persistence, including methods that help with maintaining its relationship to other entities.
If you plan on exposing your entities to the world, you're better off (generally) keeping behavior off of the entity. If you want to centralize your business operations (i.e. ValidateVendorOrder) you wouldn't want the Order to have an IsValid() method that runs some logic to validate itself. You don't want that code running on a client (what if they fudge it. i.e. akin to not providing any client UI to set the price on an item being placed in a shopping cart, but posting a a bogus price on the URL. If you don't have server-side validation, that's not good! And duplicating that validation is...redundant...DRY (Don't Repeat Yourself).
Another example of when having behaviors on an entity just doesn't work is the notion of lazy loading. Alot of ORMs today will allow you to lazy load data when a property is accessed on an entities. If you're building a 3-tier app, this just doesn't work as your client will ultimately inadvertantly try to make database calls when accessing properties.
These are my off-the-top-of-my-head arguments for keeping behavior off of entities.