Subclassing iOS Model Objects - Appropriate Design Pattern - objective-c

I fear this is a rather simple question, but after much googling I think I have overshot my intended result. I believe my question to be related to a design pattern, but alas I could be wrong.
My application calls an RESTful API and gets back what amounts to a list of model objects represented by an NSDictionary. Each of which I will call NNEntity. There are (conceptually) multiple different subtypes of NNEntity. All subtypes of NNEntity share the property of entityID, but each have their own unique properties as well. All instances of NNEntity have a method called readFromDict:(NSDictionary *)d that populates their respective properties. This method is enforced by a protocol that all NNEntity subtypes conform to. It looks like this:
//NNEntity.h
#interface NNEntity : NSObject <NNReadFromDictProtocol>
#property (nonatomic, strong) NSString *entityID;
#end
//NNEntity.m
#implementation NNEntity
- (void)readFromDict:(NSDictionary *)d {
//set common properties from values in d
self.entityID = [d objectForKey:#"ID"];
}
#end
//NNSubEntity1.h
#interface NNSubEntity1 : NSEntity <NNReadFromDictProtocol>
#property (nonatomic, strong) NSString *favoriteColor;
#end
//NNSubEntity1.m
#implementation NNSubEntity1
- (void)readFromDict:(NSDictionary *)d {
[super readFromDict:d];
//set unique properties from values in d
self.favoriteColor = [d objectForKey:#"colorPreference]:
}
#end
//NNSubEntity2.h
#interface NNSubEntity2 : NSEntity <NNReadFromDictProtocol>
#property (nonatomic, strong) NSString *middleName;
#end
//NNSubEntity2.m
#implementation NNSubEntity2
- (void)readFromDict:(NSDictionary *)d {
[super readFromDict:d];
//set unique properties from values in d
self.middleName = [d objectForKey:#"middleName]:
}
#end
I have read various pieces on the use of a Factory or Builder Desing pattern for similar use cases but I am curious if that is necessary in this rather simple case. For example, does my current code end up creating both and instance of NNEntity and NNSubEntity2 if I were to call something like this:
NNEntity *newEntity = [[NNSubEntity2 alloc] init];
//assume dict exists already and is properly keyed
[newEntity readFromDict:dict];
I assume not, but would newEntity have both the common property of entityID as well as the unique property of middleName set correctly? Also, much appreciated if you have thoughts on a better or more efficient design approach.

This looks like exactly how you should be doing it. You have a base class which read in the common attributes, and subclasses which read in their specific attributes.
For example, does my current code end up creating both and instance of NNEntity and NNSubEntity2? NNEntity *newEntity = [[NNSubEntity2 alloc] init];
Nope. When you run this, you instantiate NNSubEntity2 and store the result in a variable typed by it's superclass, which is totally valid. This allows you to call any methods defined on the superclass, but the actual instance is still of the subclass.
Would newEntity have both the common property of entityID as well as the unique property of middleName set correctly?
It sure would. It inherits the instance variables, properties and methods in the superclass.
Rest assured, as far as I can tell this looks sound and is a pattern I've used before.

I do it like this.
// NNEntity.h
#interface NNEntity : NSObject
#property (nonatomic, retain) NSString *entityId;
#end;
// NNEntity.m
#implementation NNEntity
#end;
// NNEntity+KVC.h
#interface NNEnity (KVC)
-(void)setValue:(id)value forUndefinedKey:(NSString *)key {
#end
// NNEntity+KVC.m
#implementation NNEntity (KVC)
-(void)setValue:(id)value forUndefinedKey:(NSString *)key {
// Handle this as appropriate to your app.
// A minimal implementation will throw an exception.
}
#end
And similarly for your various subclasses. You don't (necessarily) need the category on your subclasses.
Then, given NSDictionary *dict with your stuff in it:
NNEntity *entity = [[NNEntity alloc] init];
[entity setValuesForKeysWithDictionary:dict];
Violá! You're done. There are some criticisms of this method, but given a strong implementation of setValue:forUndefinedKey:, I think it's safe and incredibly flexible.
The secrets are in Apple's beautiful Key-Value Coding technology. Essentially, setValuesForKeysWithDictionary: iterates the keys the dict you give it, and for eachinvokes setValue:forKey: in its receiver. It looks something like this (though I'm sure Apple optimizes it under the hood):
-(void)setValuesForKeysWithDictionary:(NSDictionary *)dictionary {
NSArray *keys = [dictionary allKeys];
for (NSString* key in keys) {
[self setValue:[dictionary valueForKey:key] forKey:key];
}
}
I also like this approach because a conversion to CoreData is simple; when you tell CoreData to 'render' your model, it simply overwrites your stubbed model classes, keeping your KVC Category intact. What is more, if your implementation of setValue:forUndefinedKey: is smooth, you can make model changes to your backend without crashing the app (this is a bit of a no-no, but it's not much different from your factory solution).
Of course, I have not addressed your need to selectively choose which class to instantiate. But that is a larger design issue that could be affected even by the design of your API and backend. So I defer.
Also, as you noted in your comment below, the property names must match up. This is a show-stopper for some developers, especially so if you cannot control both the backend and the client.
Give it a try. Feedback is welcome.

Related

Synthesis and Protected Instance Variables in "Modern" Objective-C?

I want to create a class that serves as a base (or "abstract") class to be extended by subclasses. The best way I can explain what I'm talking about is with a few examples. Here's a possible interface for my superclass:
#import <Cocoa/Cocoa.h>
#import "MyViewControllerDelegate.h"
#interface MyViewController : NSViewController
#property (nonatomic, weak) id<MyViewModeControllerDelegate> delegate;
#property (nonatomic, copy) NSArray *content;
#end
Writing it like that seems nice and clean, but I can't access the ivars from my subclasses.
After doing some research, I've concluded that a good way to provide subclasses with direct access to ivars is to use the #protected directive and include any declarations in the header file so subclasses can see it:
#import <Cocoa/Cocoa.h>
#import "MyViewControllerDelegate.h"
#interface MyViewController : NSViewController {
#protected
__weak id<MyViewControllerDelegate> _delegate;
NSMutableArray *_content;
}
#property (nonatomic, weak) id<BSDViewModeControllerDelegate> delegate;
#property (nonatomic, copy) NSArray *content;
#end
I personally don't have an issue with that, and it seems to work the way I want it to (e.g. subclasses can access the ivars directly, but other classes have to use accessors). However, I read blog posts or Stack Overflow answers every day that say instance variables should just be synthesized, or "I don't even touch instance variables anymore."
The thing is, I started learning Objective-C post-ARC, so I'm not fully aware of the ways in which developers had to do things in the past. I personally like the control I have when I implement my own getters/setters, and I like being able to actually see instance variable declarations, but maybe I'm old school. I mean, if one should "just let the compiler synthesize the instance variables," how does one include any sort of logic or "side effects" without implementing a bunch of KVO?
For example, if my instance variables and getters/setters are synthesized, how do I initialize stuff lazily? For example, I sometimes like to do this:
- (NSArray *)myLazyArray
{
if ( _myLazyArray == nil ) {
self.myLazyArray = #[];
}
return _myLazyArray.copy;
}
Or how do I make sure that a value being set isn't the same as the currently set value? I'll sometimes implement a check in my mutator method like this:
- (void)setMyLazyArray:(NSArray *)array
{
if ( [array isEqualToArray:_myLazyArray] )
return;
_myLazyArray = array.mutableCopy;
}
I've read all of Apple's documentation, but half their docs date back to 2008 (or worse in some cases), so I'm not exactly sure they're the best place to get information on the matter.
I guess the gist of my question is this: Is there a preferred "modern" way of handling instance variables, variable synthesis, inheritance, scope, etc. in Objective-C? Bonus points for answers that don't include "Bro, Swift." or "You aren't using Swift?"
Any guidance would be much appreciated. Thanks for reading!
Why do your subclasses need access to your ivars? Ivars are an implementation detail and subclasses shouldn't be concerned with that. There could be all sorts of side effects if the parent class is doing logic in the property setter/getters. Therefore, always access them through the property.
Assuming this is in your subclass and you are overriding a property getter:
- (NSArray *)myLazyArray
{
if ( super.myLazyArray == nil ) {
// do what you need to do to populate the array
// assign it to yourself (or super)
self.myLazyArray = #[];
}
return super.myLazyArray;
}
And then for the setter:
- (void)setMyLazyArray:(NSArray *)array
{
if ( [array isEqualToArray:super.myLazyArray] )
return;
super.myLazyArray = array.mutableCopy;
}

Which one is initialized, property or its instance variable

Suppose I have a property called myPropertyName defined in my class MyClassName. Manual memory management is used throughout this post.
MyClassName.h
#import <UIKit/UIKit.h>
#interface MyClassName : NSObject {
#private
NSObject* myPropertyName;
#public
}
#property (nonatomic, retain) NSObject* myPropertyName;
// Some methods prototypes are here
#end
MyClassName.m
#import "MyClassName.h"
#implementation MyClassName
#synthesize myPropertyName;
// Some methods are here
#end
I'm confused with usages such as the place of myPropertyName declaration, its difference between instance variable. For example, what is the difference among these three statement of initialization code, for example, in the customized -(void)init method for my class myClassName.
self.myPropertyName = [[[NSObject alloc] init] autorelease];
This one is calling myPropertyName setter, but I'm not sure what is the name of the instance variable being used in the setter, myPropertyName (since I've declared a #private field named myPropertyName) or _myPropertyName (people say that this one with underbar is the default)?
myPropertyName = [[NSObject alloc] init];
Does this initialize the instance variable of the myPropertyName property? If I don't have #synthesize myPropertyName = _myPropertyName;, would it be wrong since the default instance variable for the property is said to be _myPropertyName.
_myPropertyName = [[NSObject alloc] init];
Is _myPropertyName still declared as the instance variable for my property myPropertyName even if I use #synthesize myPropertyName; and #private NSObject* myPropertyName;?
In my understanding, a property is just a name (such as myPropertyName), there should be some instance variable encapsulated to be used in actual operations in the code, such as assigning values.
First off, I highly recommend reading Apple's documentation on properties, also linked by nhgrif. However, I understand docs can be a bit dense reading material (though Apple's, I find, are not so bad), so I'll give a brief overview of properties here.
I like examples, so I'm going to rewrite your two classes in a bit more current form.
MyClassName.h
#import <UIKit/UIKit.h>
#interface MyClassName : NSObject
#property (nonatomic, strong) NSObject *myPropertyName;
// method prototypes here
#end
MyClassName.m
#import "MyClassName.h"
#implementation MyClassName
// some methods here
#end
The class MyClassName now has a property called myPropertyName of type NSObject *. The compiler will do a lot of work for you for "free" in this instance. Specifically, it will generate a backing variable, and also generate a setter and getter for myPropertyName. If I were to rewrite the two files, and pretend I'm the compiler, including that stuff, they would look like this:
MyClassName.h
#import <UIKit/UIKit.h>
#interface MyClassName : NSObject {
NSObject *_myPropertyName;
}
#property (nonatomic, strong) NSObject *myPropertyName;
- (void)setMyPropertyName:(NSObject *)obj;
- (NSObject *)myPropertyName;
#end
MyClassName.m
#import "MyClassName.h"
#implementation MyClassName
- (void)setMyPropertyName:(NSObject *)obj
{
_myPropertyName = obj;
}
- (NSObject *)myPropertyName
{
return _myPropertyName;
}
#end
Again, all of this is happening for "free": I'm just showing you what's happening under the hood. Now for your numbered questions.
self.myPropertyName = [[[NSObject alloc] init] autorelease];
First of all, you should probably be using Automatic Reference Counting, or ARC. If you are, you won't be allowed to call autorelease. Ignoring that part, this works fine. Excluding the autorelease, this is exactly equivalent to:
[self setMyPropertyName:[[NSObject alloc] init]];
Which, if you look at the second .m file I wrote out, above, will basically translate to:
`_myPropertyName = [[NSObject alloc] init];
myPropertyName = [[NSObject alloc] init];
As written, this code will give a compiler error, since there is no variable called myPropertyName in this class. If you really want to access the instance variable underlying (or, "backing") the myPropertyName property, you can, by using its real name:
_myPropertyName = [[NSObject alloc] init]; // note the underscore
But most of the time, it's better to use the setter, as in point 1., since that allows for side effects, and for Key-Value Coding, and other good stuff.
_myPropertyName = [[NSObject alloc] init];
Oh. Well you got it. See point 2.
You mentioned that:
I'm confused with usages such as the place of myPropertyName declaration, its difference between instance variable. For example, what is the difference among these three statement of initialization code, for example, in the customized -(void)init method for my class myClassName.
In case it hasn't been made clear, a property is something of an abstract concept; its data is stored in a normal instance variable, typically assigned by the compiler. Its access should usually be restricted to the setter and getter, with important exceptions. To keep this answer short, I won't go into more detail than that.
One more thing: as nhgrif mentioned, you don't need to use the #synthesize keyword anymore. That is implicitly understood by the compiler now.
If you're not sure about any of this, post a comment or, better yet, read the docs.
Let's take this example:
#property NSString *fullName;
If in the implementation, we override the setters and getters, and in these setters and getters, we don't use an instance variable fullName, it is never created. For example:
- (NSString *)fullName
{
return [NSString stringWithFormat:#"%# %#", self.firstName, self.lastName];
}
- (void)setFullName:(NSString *)fullName
{
//logic to split fullName into two strings
//self.firstName = etc
//self.lastName = etc.
}
In this example, there is no instance variable for fullName created.
This is according to Apple's Official Documentation
If, however, you don't override both the setter and getter, an instance variable is created.
As a sidenote, you can declare a property readonly, and then simply overriding the getter (without using the variable) will prevent an ivar being created. Likewise, you can declare a property writeonly and just override the setter.

Accessing Objects from Class or Method

I have 2 classes in my Cocoa project (Xcode). First is AppDelegate class and the second is a Book class.
In my Book class, I set an integer property in the #interface which is the book's chapters. In its #implementation, I have created objects (ex. Book *firstBook = [[Book alloc]init]) and set their properties (In the Book.m file). Those are my data and will not change.
In my app delegate, I have a method that will fetch what the user selected from an interface item, get the title of the selected item, who's name will be identical to one of those in Book.m. Then a for loop will run to create menu items for a popUpButton so the user can select which chapter to jump to.
The problem I am seeing now is that when I try running the for loop to create menu items, I need the limit amount of the loops. That limit amount is based on the selectedObjectByUser's chapter property (listed in Book.m). How do I access that.
I am sure it will work if I can connect these two together because it works when create the object inside this method(under AppDelegate.h) but the problem is that it is too space consuming and it changes often.
I'm not entirely sure what the situation is here, but let's take a look at some sample code first.
//// Book.h
#interface Book : NSObject
#property (nonatomic, retain) NSString *title;
#property (nonatomic, retain) NSString *author;
#property (nonatomic, assign) NSInteger numberOfPages;
- (id)initWithTitle:(NSString *)aTitle andAuthor:(NSString *)anAuthor;
#end
//// Book.m
#implementation Book
- (id)initWithTitle:(NSString *)aTitle andAuthor:(NSString *)anAuthor {
if ( self = [super init] ) {
self.title = aTitle;
self.author = anAuthor;
}
return self;
}
- (void)dealloc {
self.title = nil;
self.author = nil;
[super dealloc];
}
#end
So in this we establish a class and provide it with 3 properties, title and author (which are both NSString's) and numberOfPages (which is an integer). Within the class we can manipulate those values by calling things such as self.propertyName = value.
This is all well and good, but what actually is happening? Well let's update the header a little more:
//// Book.h
#interface Book : NSObject {
#private
NSString *_title;
NSString *_author;
NSInteger _numberOfPages;
}
#property (nonatomic, retain) NSString *title;
#property (nonatomic, retain) NSString *author;
#property (nonatomic, assign) NSInteger numberOfPages;
- (id)initWithTitle:(NSString *)aTitle andAuthor:(NSString *)anAuthor;
#end
In this, we have just explicitly defined something that the compiler will normally infer through the #property construct. These new additions are what we call instance variables, or ivars, and are where the values you assign to your properties are actually stored.
However, manipulating the ivars can be dangerous if you are not yet 100% comfortable with memory management. Even if you are using ARC, you should still understand how that management works.
So we've now exposed where these properties actually store there data, but what about that #private job? What's it all about? #private is part of a family of keywords that help to denote the "Accessibility Scope" of something. The other two keywords in this family are #protected and #public, however the use of the second two is infrequent, if not unusual. These keywords are responsible for saying where you are allowed to access things. Here's a quick definition of them.
#public Freely accessible from anywhere, even outside of the object itself. However accessing an instance variable directly from outside of its own class is generally considered to be extremely bad practice in the Cocoa development world, hence why you'll find very little on how to do it.
#protected Freely accessible within the class and its own subclasses. Can not be accessed outside of the class/object.
#private Freely accessible within the class, but not anywhere else. Can not be accessed outside of the class/object or even in its subclasses.
So now that we've covered what is actually driving the storage behind a property, let's take a look at using our Book object in another part of the app, such as AppDelegate.
//// AppDelegate.m
#implementation AppDelegate
- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
Book *myBook = [[Book alloc] initWithTitle:#"pending title" andAuthor:#"Foo Bar"];
myBook.title = #"My Cool Book";
NSLog(#"%# by %#", myBook.title, myBook.author);
[myBook release];
}
#end
In this we create a new Book object, to put it in more technical terms, we define a variable called myBook with a type of Book and instantiate it. In this we're using the -initWithTitle:andAuthor: method that we created earlier in order to tell the Book object that it should have an initial title and author.
Following this line we then arrive something a little more curious. myBook.title = #"My Cool Book"; You might recall that we had something similar back in Book.m, self.title = aTitle. So what is going on here? Why are we using myBook now rather than self, like we did previously? The reason is because of what self actually is.
self is a keyword provided by the Objective-C runtime, and refers to the current object that you are within. So if we write code inside Book.m, self will refer to the current Book object. If we use self within AppDelegate.m, it will refer to the AppDelegate. So in our earlier code, self was referring to the current Book object much like our myBook object is now referring to a specific Book object. They essentially are equal to each other (not exactly, but thats another area of discussion).
This means any of the properties within Book or methods can be accessed through the myBook variable, much like you would using self inside of Book.m. So we could also do
myBook.title = #"My Book";
myBook.author = #"Baz Quux";
myBook.numberOfPages = 100;
Hope this helps (and answered your question, if not then may it serve as a reference to people wishing to know more about properties and instance variables)

Instance Variables for Objective C Categories

I have a situation where it seems like I need to add instance variables to a category, but I know from Apple's docs that I can't do that. So I'm wondering what the best alternative or workaround is.
What I want to do is add a category that adds functionality to UIViewControllers. I would find it useful in all my different UIViewControllers, no matter what specific UIViewController subclass they extend, so I think a category is the best solution. To implement this functionality, I need several different methods, and I need to track data in between them, so that's what led me to wanting to create instance methods.
In case it's helpful, here's what I specifically want to do. I want to make it easier to track when the software keyboard hides and shows, so that I can resize content in my view. I've found that the only way to do it reliably is to put code in four different UIViewController methods, and track extra data in instance variables. So those methods and instance variables are what I'd like to put into a category, so I don't have to copy-paste them each time I need to handle the software keyboard. (If there's a simpler solution for this exact problem, that's fine too--but I would still like to know the answer to category instance variables for future reference!)
Yes you can do this, but since you're asking, I have to ask: Are you absolutely sure that you need to? (If you say "yes", then go back, figure out what you want to do, and see if there's a different way to do it)
However, if you really want to inject storage into a class you don't control, use an associative reference.
Recently, I needed to do this (add state to a Category). #Dave DeLong has the correct perspective on this. In researching the best approach, I found a great blog post by Tom Harrington. I like #JeremyP's idea of using #property declarations on the Category, but not his particular implementation (not a fan of the global singleton or holding global references). Associative References are the way to go.
Here's code to add (what appear to be) ivars to your Category. I've blogged about this in detail here.
In File.h, the caller only sees the clean, high-level abstraction:
#interface UIViewController (MyCategory)
#property (retain,nonatomic) NSUInteger someObject;
#end
In File.m, we can implement the #property (NOTE: These cannot be #synthesize'd):
#implementation UIViewController (MyCategory)
- (NSUInteger)someObject
{
return [MyCategoryIVars fetch:self].someObject;
}
- (void)setSomeObject:(NSUInteger)obj
{
[MyCategoryIVars fetch:self].someObject = obj;
}
We also need to declare and define the class MyCategoryIVars. For ease of understanding, I've explained this out of proper compilation order. The #interface needs to be placed before the Category #implementation.
#interface MyCategoryIVars : NSObject
#property (retain,nonatomic) NSUInteger someObject;
+ (MyCategoryIVars*)fetch:(id)targetInstance;
#end
#implementation MyCategoryIVars
#synthesize someObject;
+ (MyCategoryIVars*)fetch:(id)targetInstance
{
static void *compactFetchIVarKey = &compactFetchIVarKey;
MyCategoryIVars *ivars = objc_getAssociatedObject(targetInstance, &compactFetchIVarKey);
if (ivars == nil) {
ivars = [[MyCategoryIVars alloc] init];
objc_setAssociatedObject(targetInstance, &compactFetchIVarKey, ivars, OBJC_ASSOCIATION_RETAIN_NONATOMIC);
[ivars release];
}
return ivars;
}
- (id)init
{
self = [super init];
return self;
}
- (void)dealloc
{
self.someObject = nil;
[super dealloc];
}
#end
The above code declares and implements the class which holds our ivars (someObject). As we cannot really extend UIViewController, this will have to do.
I believe it is now possible to add synthesized properties to a category and the instance variables are automagically created, but I've never tried it so I'm not sure if it will work.
A more hacky solution:
Create a singleton NSDictionary which will have the UIViewController as the key (or rather its address wrapped as an NSValue) and the value of your property as its value.
Create getter and setter for the property that actually goes to the dictionary to get/set the property.
#interface UIViewController(MyProperty)
#property (nonatomic, retain) id myProperty;
#property (nonatomic, readonly, retain) NSMutableDcitionary* propertyDictionary;
#end
#implementation UIViewController(MyProperty)
-(NSMutableDictionary*) propertyDictionary
{
static NSMutableDictionary* theDictionary = nil;
if (theDictionary == nil)
{
theDictioanry = [[NSMutableDictionary alloc] init];
}
return theDictionary;
}
-(id) myProperty
{
NSValue* key = [NSValue valueWithPointer: self];
return [[self propertyDictionary] objectForKey: key];
}
-(void) setMyProperty: (id) newValue
{
NSValue* key = [NSValue valueWithPointer: self];
[[self propertyDictionary] setObject: newValue forKey: key];
}
#end
Two potential problems with the above approach:
there's no way to remove keys of view controllers that have been deallocated. As long as you are only tracking a handful, that shouldn't be a problem. Or you could add a method to delete a key from the dictionary once you know you are done with it.
I'm not 100% certain that the isEqual: method of NSValue compares content (i.e. the wrapped pointer) to determine equality or if it just compares self to see if the comparison object is the exact same NSValue. If the latter, you'll have to use NSNumber instead of NSValue for the keys (NSNumber numberWithUnsignedLong: will do the trick on both 32 bit and 64 bit platforms).
This is best achieved using the built-in ObjC feature Associated Objects (aka Associated References), in the example below just change to your category and replace associatedObject with your variable name.
NSObject+AssociatedObject.h
#interface NSObject (AssociatedObject)
#property (nonatomic, strong) id associatedObject;
#end
NSObject+AssociatedObject.m
#import <objc/runtime.h>
#implementation NSObject (AssociatedObject)
#dynamic associatedObject;
- (void)setAssociatedObject:(id)object {
objc_setAssociatedObject(self, #selector(associatedObject), object, OBJC_ASSOCIATION_RETAIN_NONATOMIC);
}
- (id)associatedObject {
return objc_getAssociatedObject(self, #selector(associatedObject));
}
See here for the full tutorial:
http://nshipster.com/associated-objects/
It mentioned in many document's online that you can't create create new variable in category but I found a very simple way to achieve that. Here is the way that let declare new variable in category.
In Your .h file
#interface UIButton (Default)
#property(nonatomic) UIColor *borderColor;
#end
In your .m file
#import <objc/runtime.h>
static char borderColorKey;
#implementation UIButton (Default)
- (UIColor *)borderColor
{
return objc_getAssociatedObject(self, &borderColorKey);
}
- (void)setBorderColor:(UIColor *)borderColor
{
objc_setAssociatedObject(self, &borderColorKey,
borderColor, OBJC_ASSOCIATION_RETAIN_NONATOMIC);
self.layer.borderColor=borderColor.CGColor;
}
#end
That's it now you have the new variable.
Why not simply create a subclass of UIViewController, add the functionality to that, then use that class (or a subclass thereof) instead?
Depending on what you're doing, you may want to use Static Category Methods.
So, I assume you've got this kind of problem:
ScrollView has a couple of textedits in them. User types on text edit, you want to scroll the scroll view so the text edit is visible above the keyboard.
+ (void) staticScrollView: (ScrollView*)sv scrollsTo:(id)someView
{
// scroll view to someviews's position or some such.
}
returning from this wouldn't necessarily require the view to move back, and so it doesn't need to store anything.
But that's all I can thinkof without code examples, sorry.
I believe it is possible to add variables to a class using the Obj-C runtime.
I found this discussion also.

Binding to a relations property in Core Data

I'm new in Core Data, and i got a problem i can't get my head around how to do "the right way"
I'll try and examplify my problem.
I got a entity Car. And a list of all the cars in my program. The cars have some attributes, but they are not predefined. So for each car i want to be able to define some properties.
Therefore i have defined a new entity CarProperty, with a one to many relation with the car.
In the nscollectionview i would like to show some of the properties from the car, more specefic the number of kilometer (numKm) it has driven (if that property exist). So i want to bind it to a label. But how to do?
I can't say representedObject.properties.numKm, or representedObject.numKm.
How should I get around this?
Hope it makes sense.
This isn't an easy problem. The thing is, Core Data doesn't know anything about numKm as a property. How is it supposed to know that numKm corresponds to a particular CarProperty object?
The fundamental problem you're describing is key-value coding compliance. Cocoa's going to look for a method called numKm on the properties object. Not finding one, it'll try sending [properties valueForKey:#"numKm"]; Since valueForKey: doesn't know what to do with numKm, you get an error, but not before it calls [properties valueForUndefinedKey:#"numKm"]
But here's the catch: properties is an NSSet generated by Core Data, so you can't subclass it to override valueForUndefinedKey:. What you can do is create your own object that's KVC-compliant for your arbitrary properties and use that instead.
One solution is to subclass NSDictionary and make it act as a proxy. The primitive methods are count, objectForKey: and keyEnumerator. If you override these three methods, you can create an NSDictionary that's linked to your Car object and returns the appropriate CarProperty objects. For example:
#interface PropertyProxy : NSDictionary {
}
#property (nonatomic, readonly, assign) Car *car;
- (id)initWithCar:(Car *)car
#end
#implementation PropertyProxy
#synthesize car = _car;
- (id)initWithCar:(Car *)car {
if (!(self = [super init]))
return nil;
_car = car;
return self;
}
- (NSInteger)count {
return [car.properties count];
}
- (id)objectForKey:(NSString *)key {
return [[car.properties filteredSetUsingPredicate:[NSPredicate predicateWithFormt:#"key == %#", key]] anyObject];
}
- (NSEnumerator *)keyEnumerator {
return [[car valueForKeyPath:#"properties.key"] objectEnumerator];
}
#end
Then, in your Car class, do this:
#interface Car : NSManagedObject {
// other stuff
}
#property (nonatomic, readonly) NSDictionary *carProperties;
// other stuff
#end
#implementation Car
// other stuff
- (NSDictionary *)carProperties {
return [[[PropertyProxy alloc] initWithCar:self] autorelease];
}
#end
(Disclaimer: I just typed this into my web browser, so no guarantees this actually compiles :-))
As you can see, it's not the easiest thing in the world to do. You'll be able to set up key paths like this:
representedObject.carProperties.numKm;
Keep in mind that, while this is key-value coding compliant, it is not key-value observing compliant. So if numKm changes, you won't be able to observe that. You would need to do some extra work to make that happen.