QuickCheck: Arbitrary instances of nested data structures that generate balanced specimens - testing

tl;dr: how do you write instances of Arbitrary that don't explode if your data type allows for way too much nesting? And how would you guarantee these instances produce truly random specimens of your data structure?
I want to generate random tree structures, then test certain properties of these structures after I've mangled them with my library code. (NB: I'm writing an implementation of a subtyping algorithm, i.e. given a hierarchy of types, is type A a subtype of type B. This can be made arbitrarily complex, by including multiple-inheritance and post-initialization updates to the hierarchy. The classical method that supports neither of these is Schubert Numbering, and the latest result known to me is Alavi et al. 2008.)
Let's take the example of rose-trees, following Data.Tree:
data Tree a = Node a (Forest a)
type Forest a = [Tree a]
A very simple (and don't-try-this-at-home) instance of Arbitray would be:
instance (Arbitrary a) => Arbitrary (Tree a) where
arbitrary = Node <$> arbitrary <$> arbitrary
Since a already has an Arbitrary instance as per the type constraint, and the Forest will have one, because [] is an instance, too, this seems straight-forward. It won't (typically) terminate for very obvious reasons: since the lists it generates are arbitrarily long, the structures become too large, and there's a good chance they won't fit into memory. Even a more conservative approach:
arbitrary = Node <$> arbitrary <*> oneof [arbitrary,return []]
won't work, again, for the same reason. One could tweak the size parameter, to keep the length of the lists down, but even that won't guarantee termination, since it's still multiple consecutive dice-rolls, and it can turn out quite badly (and I want the odd node with 100 children.)
Which means I need to limit the size of the entire tree. That is not so straight-forward. unordered-containers has it easy: just use fromList. This is not so easy here: How do you turn a list into a tree, randomly, and without incurring bias one way or the other (i.e. not favoring left-branches, or trees that are very left-leaning.)
Some sort of breadth-first construction (the functions provided by Data.Tree are all pre-order) from lists would be awesome, and I think I could write one, but it would turn out to be non-trivial. Since I'm using trees now, but will use even more complex stuff later on, I thought I might try to find a more general and less complex solution. Is there one, or will I have to resort to writing my own non-trivial Arbitrary generator? In the latter case, I might actually just resort to unit-tests, since this seems too much work.

Use sized:
instance Arbitrary a => Arbitrary (Tree a) where
arbitrary = sized arbTree
arbTree :: Arbitrary a => Int -> Gen (Tree a)
arbTree 0 = do
a <- arbitrary
return $ Node a []
arbTree n = do
(Positive m) <- arbitrary
let n' = n `div` (m + 1)
f <- replicateM m (arbTree n')
a <- arbitrary
return $ Node a f
(Adapted from the QuickCheck presentation).
P.S. Perhaps this will generate overly balanced trees...

You might want to use the library presented in the paper "Feat: Functional Enumeration of Algebraic Types" at the Haskell Symposium 2012. It is on Hackage as testing-feat, and a video of the talk introducing it is available here: http://www.youtube.com/watch?v=HbX7pxYXsHg

As Janis mentioned, you can use the package testing-feat, which creates enumerations of arbitrary algebraic data types. This is the easiest way to create unbiased uniformly distributed generators
for all trees of up to a given size.
Here is how you would use it for rose trees:
import Test.Feat (Enumerable(..), uniform, consts, funcurry)
import Test.Feat.Class (Constructor)
import Data.Tree (Tree(..))
import qualified Test.QuickCheck as QC
-- We make an enumerable instance by listing all constructors
-- for the type. In this case, we have one binary constructor:
-- Node :: a -> [Tree a] -> Tree a
instance Enumerable a => Enumerable (Tree a) where
enumerate = consts [binary Node]
where
binary :: (a -> b -> c) -> Constructor c
binary = unary . funcurry
-- Now we use the Enumerable instance to create an Arbitrary
-- instance with the help of the function:
-- uniform :: Enumerable a => Int -> QC.Gen a
instance Enumerable a => QC.Arbitrary (Tree a) where
QC.arbitrary = QC.sized uniform
-- QC.shrink = <some implementation>
The Enumerable instance can also be generated automatically with TemplateHaskell:
deriveEnumerable ''Tree

Related

How do I remember the root of a binary search tree in Haskell

I am new to Functional programming.
The challenge I have is regarding the mental map of how a binary search tree works in Haskell.
In other programs (C,C++) we have something called root. We store it in a variable. We insert elements into it and do balancing etc..
The program takes a break does other things (may be process user inputs, create threads) and then figures out it needs to insert a new element in the already created tree. It knows the root (stored as a variable) and invokes the insert function with the root and the new value.
So far so good in other languages. But how do I mimic such a thing in Haskell, i.e.
I see functions implementing converting a list to a Binary Tree, inserting a value etc.. That's all good
I want this functionality to be part of a bigger program and so i need to know what the root is so that i can use it to insert it again. Is that possible? If so how?
Note: Is it not possible at all because data structures are immutable and so we cannot use the root at all to insert something. in such a case how is the above situation handled in Haskell?
It all happens in the same way, really, except that instead of mutating the existing tree variable we derive a new tree from it and remember that new tree instead of the old one.
For example, a sketch in C++ of the process you describe might look like:
int main(void) {
Tree<string> root;
while (true) {
string next;
cin >> next;
if (next == "quit") exit(0);
root.insert(next);
doSomethingWith(root);
}
}
A variable, a read action, and loop with a mutate step. In haskell, we do the same thing, but using recursion for looping and a recursion variable instead of mutating a local.
main = loop Empty
where loop t = do
next <- getLine
when (next /= "quit") $ do
let t' = insert next t
doSomethingWith t'
loop t'
If you need doSomethingWith to be able to "mutate" t as well as read it, you can lift your program into State:
main = loop Empty
where loop t = do
next <- getLine
when (next /= "quit") $ do
loop (execState doSomethingWith (insert next t))
Writing an example with a BST would take too much time but I give you an analogous example using lists.
Let's invent a updateListN which updates the n-th element in a list.
updateListN :: Int -> a -> [a] -> [a]
updateListN i n l = take (i - 1) l ++ n : drop i l
Now for our program:
list = [1,2,3,4,5,6,7,8,9,10] -- The big data structure we might want to use multiple times
main = do
-- only for shows
print $ updateListN 3 30 list -- [1,2,30,4,5,6,7,8,9,10]
print $ updateListN 8 80 list -- [1,2,3,4,5,6,7,80,9,10]
-- now some illustrative complicated processing
let list' = foldr (\i l -> updateListN i (i*10) l) list list
-- list' = [10,20,30,40,50,60,70,80,90,100]
-- Our crazily complicated illustrative algorithm still needs `list`
print $ zipWith (-) list' list
-- [9,18,27,36,45,54,63,72,81,90]
See how we "updated" list but it was still available? Most data structures in Haskell are persistent, so updates are non-destructive. As long as we have a reference of the old data around we can use it.
As for your comment:
My program is trying the following a) Convert a list to a Binary Search Tree b) do some I/O operation c) Ask for a user input to insert a new value in the created Binary Search Tree d) Insert it into the already created list. This is what the program intends to do. Not sure how to get this done in Haskell (or) is am i stuck in the old mindset. Any ideas/hints welcome.
We can sketch a program:
data BST
readInt :: IO Int; readInt = undefined
toBST :: [Int] -> BST; toBST = undefined
printBST :: BST -> IO (); printBST = undefined
loop :: [Int] -> IO ()
loop list = do
int <- readInt
let newList = int : list
let bst = toBST newList
printBST bst
loop newList
main = loop []
"do balancing" ... "It knows the root" nope. After re-balancing the root is new. The function balance_bst must return the new root.
Same in Haskell, but also with insert_bst. It too will return the new root, and you will use that new root from that point forward.
Even if the new root's value is the same, in Haskell it's a new root, since one of its children has changed.
See ''How to "think functional"'' here.
Even in C++ (or other imperative languages), it would usually be considered a poor idea to have a single global variable holding the root of the binary search tree.
Instead code that needs access to a tree should normally be parameterised on the particular tree it operates on. That's a fancy way of saying: it should be a function/method/procedure that takes the tree as an argument.
So if you're doing that, then it doesn't take much imagination to figure out how several different sections of code (or one section, on several occasions) could get access to different versions of an immutable tree. Instead of passing the same tree to each of these functions (with modifications in between), you just pass a different tree each time.
It's only a little more work to imagine what your code needs to do to "modify" an immutable tree. Obviously you won't produce a new version of the tree by directly mutating it, you'll instead produce a new value (probably by calling methods on the class implementing the tree for you, but if necessary by manually assembling new nodes yourself), and then you'll return it so your caller can pass it on - by returning it to its own caller, by giving it to another function, or even calling you again.
Putting that all together, you can have your whole program manipulate (successive versions of) this binary tree without ever having it stored in a global variable that is "the" tree. An early function (possibly even main) creates the first version of the tree, passes it to the first thing that uses it, gets back a new version of the tree and passes it to the next user, and so on. And each user of the tree can call other subfunctions as needed, with possibly many of new versions of the tree produced internally before it gets returned to the top level.
Note that I haven't actually described any special features of Haskell here. You can do all of this in just about any programming language, including C++. This is what people mean when they say that learning other types of programming makes them better programmers even in imperative languages they already knew. You can see that your habits of thought are drastically more limited than they need to be; you could not imagine how you could deal with a structure "changing" over the course of your program without having a single variable holding a structure that is mutated, when in fact that is just a small part of the tools that even C++ gives you for approaching the problem. If you can only imagine this one way of dealing with it then you'll never notice when other ways would be more helpful.
Haskell also has a variety of tools it can bring to this problem that are less common in imperative languages, such as (but not limited to):
Using the State monad to automate and hide much of the boilerplate of passing around successive versions of the tree.
Function arguments allow a function to be given an unknown "tree-consumer" function, to which it can give a tree, without any one place both having the tree and knowing which function it's passing it to.
Lazy evaluation sometimes negates the need to even have successive versions of the tree; if the modifications are expanding branches of the tree as you discover they are needed (like a move-tree for a game, say), then you could alternatively generate "the whole tree" up front even if it's infinite, and rely on lazy evaluation to limit how much work is done generating the tree to exactly the amount you need to look at.
Haskell does in fact have mutable variables, it just doesn't have functions that can access mutable variables without exposing in their type that they might have side effects. So if you really want to structure your program exactly as you would in C++ you can; it just won't really "feel like" you're writing Haskell, won't help you learn Haskell properly, and won't allow you to benefit from many of the useful features of Haskell's type system.

BFS bad complexity

I am using adjacency lists to represent graph in OCaml. Then I made the following implementation of a BFS in OCaml starting at the node s.
let bfs graph s=
let size = Array.length graph in
let seen = Array.make size false and next = [s] in
let rec aux = function
|[] -> ()
|t::q -> if not seen.(t) then begin seen.(t) <- true; aux (q#graph.(t)) end else aux q
in aux next
size represents the number of nodes of the graph. seen is an array where seen.(t) = true if we've seen the node t, and next is a list of the node we need to see.
The thing is that normally the time complexity for BFS is linear (O( V +E)) yet I feel like my implementation doesn't have this complexity. If I am not mistaken the complexity of q#graph.(t) is quite big since it's O(| q |). So my complexity is quite bad since at each step I am concatenating two lists and this is heavy in time.
Thus I am wondering how can I adapt this code to make an efficient BFS? The problem (I think) comes from the implementation of a Queue using lists. Does the complexity of the Queue module in OCaml takes O(1) to add an element? In this case how can I use this module to make my bfs work, since I can't do pattern matching with Queue just as easily as list?
the complexity of q#graph.(t) is quite big since it's O(| q |). So my complexity is quite bad since at each step I am concatenating two lists and this is heavy in time.
You are absolutely right – this is the bottleneck of your BFS. You should be happily able to use the Queue module, because according to https://ocaml.org/learn/tutorials/comparison_of_standard_containers.html operation of insertion and taking elements is O(1).
One of the differences between queues and lists in OCaml is that queues are mutable structures, so you will need to use non pure functions like add, take and top that respectively insert element in-place, pop element from the front and return first element.
If I am not mistaken the complexity of q#graph.(t) is quite big since it's O(| q |).
That is indeed the problem. What you should be using is graph.(t) # q. The complexity of that is O(| graph.(t) |).
You might ask: What difference does that make?
The difference is that |q| can be anything from 0 to V * E. graph.(t) on the other hand you can work with. You visit every vertex in the graph at most once so overall the complexity will be
O(\Sum_V |grahp.(v))
The sum of all edges of each vertex in the graph. Or in other words: E.
That brings you to the overall complexity of O(V + E).

How to use SmallCheck in Haskell?

I am trying to use SmallCheck to test a Haskell program, but I cannot understand how to use the library to test my own data types. Apparently, I need to use the Test.SmallCheck.Series. However, I find the documentation for it extremely confusing. I am interested in both cookbook-style solutions and an understandable explanation of the logical (monadic?) structure. Here are some questions I have (all related):
If I have a data type data Person = SnowWhite | Dwarf Integer, how do I explain to smallCheck that the valid values are Dwarf 1 through Dwarf 7 (or SnowWhite)? What if I have a complicated FairyTale data structure and a constructor makeTale :: [Person] -> FairyTale, and I want smallCheck to make FairyTale-s from lists of Person-s using the constructor?
I managed to make quickCheck work like this without getting my hands too dirty by using judicious applications of Control.Monad.liftM to functions like makeTale. I couldn't figure out a way to do this with smallCheck (please explain it to me!).
What is the relationship between the types Serial, Series, etc.?
(optional) What is the point of coSeries? How do I use the Positive type from SmallCheck.Series?
(optional) Any elucidation of what is the logic behind what should be a monadic expression, and what is just a regular function, in the context of smallCheck, would be appreciated.
If there is there any intro/tutorial to using smallCheck, I'd appreciate a link. Thank you very much!
UPDATE: I should add that the most useful and readable documentation I found for smallCheck is this paper (PDF). I could not find the answer to my questions there on the first look; it is more of a persuasive advertisement than a tutorial.
UPDATE 2: I moved my question about the weird Identity that shows up in the type of Test.SmallCheck.list and other places to a separate question.
NOTE: This answer describes pre-1.0 versions of SmallCheck. See this blog post for the important differences between SmallCheck 0.6 and 1.0.
SmallCheck is like QuickCheck in that it tests a property over some part of the space of possible types. The difference is that it tries to exhaustively enumerate a series all of the "small" values instead of an arbitrary subset of smallish values.
As I hinted, SmallCheck's Serial is like QuickCheck's Arbitrary.
Now Serial is pretty simple: a Serial type a has a way (series) to generate a Series type which is just a function from Depth -> [a]. Or, to unpack that, Serial objects are objects we know how to enumerate some "small" values of. We are also given a Depth parameter which controls how many small values we should generate, but let's ignore it for a minute.
instance Serial Bool where series _ = [False, True]
instance Serial Char where series _ = "abcdefghijklmnopqrstuvwxyz"
instance Serial a => Serial (Maybe a) where
series d = Nothing : map Just (series d)
In these cases we're doing nothing more than ignoring the Depth parameter and then enumerating "all" possible values for each type. We can even do this automatically for some types
instance (Enum a, Bounded a) => Serial a where series _ = [minBound .. maxBound]
This is a really simple way of testing properties exhaustively—literally test every single possible input! Obviously there are at least two major pitfalls, though: (1) infinite data types will lead to infinite loops when testing and (2) nested types lead to exponentially larger spaces of examples to look through. In both cases, SmallCheck gets really large really quickly.
So that's the point of the Depth parameter—it lets the system ask us to keep our Series small. From the documentation, Depth is the
Maximum depth of generated test values
For data values, it is the depth of nested constructor applications.
For functional values, it is both the depth of nested case analysis and the depth of results.
so let's rework our examples to keep them Small.
instance Serial Bool where
series 0 = []
series 1 = [False]
series _ = [False, True]
instance Serial Char where
series d = take d "abcdefghijklmnopqrstuvwxyz"
instance Serial a => Serial (Maybe a) where
-- we shrink d by one since we're adding Nothing
series d = Nothing : map Just (series (d-1))
instance (Enum a, Bounded a) => Serial a where series d = take d [minBound .. maxBound]
Much better.
So what's coseries? Like coarbitrary in the Arbitrary typeclass of QuickCheck, it lets us build a series of "small" functions. Note that we're writing the instance over the input type---the result type is handed to us in another Serial argument (that I'm below calling results).
instance Serial Bool where
coseries results d = [\cond -> if cond then r1 else r2 |
r1 <- results d
r2 <- results d]
these take a little more ingenuity to write and I'll actually refer you to use the alts methods which I'll describe briefly below.
So how can we make some Series of Persons? This part is easy
instance Series Person where
series d = SnowWhite : take (d-1) (map Dwarf [1..7])
...
But our coseries function needs to generate every possible function from Persons to something else. This can be done using the altsN series of functions provided by SmallCheck. Here's one way to write it
coseries results d = [\person ->
case person of
SnowWhite -> f 0
Dwarf n -> f n
| f <- alts1 results d ]
The basic idea is that altsN results generates a Series of N-ary function from N values with Serial instances to the Serial instance of Results. So we use it to create a function from [0..7], a previously defined Serial value, to whatever we need, then we map our Persons to numbers and pass 'em in.
So now that we have a Serial instance for Person, we can use it to build more complex nested Serial instances. For "instance", if FairyTale is a list of Persons, we can use the Serial a => Serial [a] instance alongside our Serial Person instance to easily create a Serial FairyTale:
instance Serial FairyTale where
series = map makeFairyTale . series
coseries results = map (makeFairyTale .) . coseries results
(the (makeFairyTale .) composes makeFairyTale with each function coseries generates, which is a little confusing)
If I have a data type data Person = SnowWhite | Dwarf Integer, how do I explain to smallCheck that the valid values are Dwarf 1 through Dwarf 7 (or SnowWhite)?
First of all, you need to decide which values you want to generate for each depth. There's no single right answer here, it depends on how fine-grained you want your search space to be.
Here are just two possible options:
people d = SnowWhite : map Dwarf [1..7] (doesn't depend on the depth)
people d = take d $ SnowWhite : map Dwarf [1..7] (each unit of depth increases the search space by one element)
After you've decided on that, your Serial instance is as simple as
instance Serial m Person where
series = generate people
We left m polymorphic here as we don't require any specific structure of the underlying monad.
What if I have a complicated FairyTale data structure and a constructor makeTale :: [Person] -> FairyTale, and I want smallCheck to make FairyTale-s from lists of Person-s using the constructor?
Use cons1:
instance Serial m FairyTale where
series = cons1 makeTale
What is the relationship between the types Serial, Series, etc.?
Serial is a type class; Series is a type. You can have multiple Series of the same type — they correspond to different ways to enumerate values of that type. However, it may be arduous to specify for each value how it should be generated. The Serial class lets us specify a good default for generating values of a particular type.
The definition of Serial is
class Monad m => Serial m a where
series :: Series m a
So all it does is assigning a particular Series m a to a given combination of m and a.
What is the point of coseries?
It is needed to generate values of functional types.
How do I use the Positive type from SmallCheck.Series?
For example, like this:
> smallCheck 10 $ \n -> n^3 >= (n :: Integer)
Failed test no. 5.
there exists -2 such that
condition is false
> smallCheck 10 $ \(Positive n) -> n^3 >= (n :: Integer)
Completed 10 tests without failure.
Any elucidation of what is the logic behind what should be a monadic expression, and what is just a regular function, in the context of smallCheck, would be appreciated.
When you are writing a Serial instance (or any Series expression), you work in the Series m monad.
When you are writing tests, you work with simple functions that return Bool or Property m.
While I think that #tel's answer is an excellent explanation (and I wish smallCheck actually worked the way he describes), the code he provides does not work for me (with smallCheck version 1). I managed to get the following to work...
UPDATE / WARNING: The code below is wrong for a rather subtle reason. For the corrected version, and details, please see this answer to the question mentioned below. The short version is that instead of instance Serial Identity Person one must write instance (Monad m) => Series m Person.
... but I find the use of Control.Monad.Identity and all the compiler flags bizarre, and I have asked a separate question about that.
Note also that while Series Person (or actually Series Identity Person) is not actually exactly the same as functions Depth -> [Person] (see #tel's answer), the function generate :: Depth -> [a] -> Series m a converts between them.
{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, FlexibleContexts, UndecidableInstances #-}
import Test.SmallCheck
import Test.SmallCheck.Series
import Control.Monad.Identity
data Person = SnowWhite | Dwarf Int
instance Serial Identity Person where
series = generate (\d -> SnowWhite : take (d-1) (map Dwarf [1..7]))

Haskell: List fusion, where is it needed?

Lets say we have the following:
l = map f (map g [1..100])
And we want to do:
head l
So we get:
head (map f (map g [1..100]))
Now, we have to get the first element of this. map is defined something like so:
map f l = f (head l) : (map f (tail l))
So then we get:
f (head (map g [1..100]))
And then applied again:
f (g (head [1..100]))
Which results in
f (g 1)
No intermediate lists are formed, simply due to laziness.
Is this analysis correct? And with simple structures like this:
foldl' ... $ map f1 $ map f2 $ createlist
are intermediate lists ever created, even without "list fusion"? (I think laziness should eliminate them trivially).
The only place I can see a reason to keep a list is if we did:
l' = [1..100]
l = map f (map g l')
Where we might want to keep l', if it is used elsewhere. However, in the l' case above here, it should be fairly trivial for the compiler to realise its quicker just to recalculate the above list than store it.
In your map example the list cells are created and then immediately garbage-collected. With list fusion no GC or thunk manipulation (which are both not free) is needed.
Fusion benefits most when the intermediate data structures are expensive. When the structure being passed is lazy, and accessed in a sequential manner, the structures may be relatively cheap (as is the case with lists).
For lazy structures, fusion removes the constant factor of creating a thunk, and immediately garbage collecting it.
For strict structures, fusion can remove O(n) work.
The greatest benefits are thus for strict arrays and similar structures. However, even fusing lazy lists is still a win, due to increased data locality, due to fewer intermediate structures being allocated as thunks.

Can GHC really never inline map, scanl, foldr, etc.?

I've noticed the GHC manual says "for a self-recursive function, the loop breaker can only be the function itself, so an INLINE pragma is always ignored."
Doesn't this say every application of common recursive functional constructs like map, zip, scan*, fold*, sum, etc. cannot be inlined?
You could always rewrite all these function when you employ them, adding appropriate strictness tags, or maybe employ fancy techniques like the "stream fusion" recommended here.
Yet, doesn't all this dramatically constrain our ability to write code that's simultaneously fast and elegant?
Indeed, GHC cannot at present inline recursive functions. However:
GHC will still specialise recursive functions. For instance, given
fac :: (Eq a, Num a) => a -> a
fac 0 = 1
fac n = n * fac (n-1)
f :: Int -> Int
f x = 1 + fac x
GHC will spot that fac is used at type Int -> Int and generate a specialised version of fac for that type, which uses fast integer arithmetic.
This specialisation happens automatically within a module (e.g. if fac and f are defined in the same module). For cross-module specialisation (e.g. if f and fac are defined in different modules), mark the to-be-specialised function with an INLINABLE pragma:
{-# INLINABLE fac #-}
fac :: (Eq a, Num a) => a -> a
...
There are manual transformations which make functions nonrecursive. The lowest-power technique is the static argument transformation, which applies to recursive functions with arguments which don't change on recursive calls (eg many higher-order functions such as map, filter, fold*). This transformation turns
map f [] = []
map f (x:xs) = f x : map f xs
into
map f xs0 = go xs0
where
go [] = []
go (x:xs) = f x : go xs
so that a call such as
g :: [Int] -> [Int]
g xs = map (2*) xs
will have map inlined and become
g [] = []
g (x:xs) = 2*x : g xs
This transformation has been applied to Prelude functions such as foldr and foldl.
Fusion techniques are also make many functions nonrecursive, and are more powerful than the static argument transformation. The main approach for lists, which is built into the Prelude, is shortcut fusion. The basic approach is to write as many functions as possible as non-recursive functions which use foldr and/or build; then all the recursion is captured in foldr, and there are special RULES for dealing with foldr.
Taking advantage of this fusion is in principle easy: avoid manual recursion, preferring library functions such as foldr, map, filter, and any functions in this list. In particular, writing code in this style produces code which is "simultaneously fast and elegant".
Modern libraries such as text and vector use stream fusion behind the scenes. Don Stewart wrote a pair of blog posts (1, 2) demonstrating this in action in the now obsolete library uvector, but the same principles apply to text and vector.
As with shortcut fusion, taking advantage of stream fusion in text and vector is in principle easy: avoid manual recursion, preferring library functions which have been marked as "subject to fusion".
There is ongoing work on improving GHC to support inlining of recursive functions. This falls under the general heading of supercompilation, and recent work on this seems to have been led by Max Bolingbroke and Neil Mitchell.
In short, not as often as you would think. The reason is that the "fancy techniques" such as stream fusion are employed when the libraries are implemented, and library users don't need to worry about them.
Consider Data.List.map. The base package defines map as
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs
This map is self-recursive, so GHC won't inline it.
However, base also defines the following rewrite rules:
{-# RULES
"map" [~1] forall f xs. map f xs = build (\c n -> foldr (mapFB c f) n xs)
"mapList" [1] forall f. foldr (mapFB (:) f) [] = map f
"mapFB" forall c f g. mapFB (mapFB c f) g = mapFB c (f.g)
#-}
This replaces uses of map via foldr/build fusion, then, if the function cannot be fused, replaces it with the original map. Because the fusion happens automatically, it doesn't depend on the user being aware of it.
As proof that this all works, you can examine what GHC produces for specific inputs. For this function:
proc1 = sum . take 10 . map (+1) . map (*2)
eval1 = proc1 [1..5]
eval2 = proc1 [1..]
when compiled with -O2, GHC fuses all of proc1 into a single recursive form (as seen in the core output with -ddump-simpl).
Of course there are limits to what these techniques can accomplish. For example, the naive average function, mean xs = sum xs / length xs is easily manually transformed into a single fold, and frameworks exist that can do so automatically, however at present there's no known way to automatically translate between standard functions and the fusion framework. So in this case, the user does need to be aware of the limitations of the compiler-produced code.
So in many cases compilers are sufficiently advanced to create code that's fast and elegant. Knowing when they will do so, and when the compiler is likely to fall down, is IMHO a large part of learning how to write efficient Haskell code.
for a self-recursive function, the loop breaker can only be the function itself, so an INLINE pragma is always ignored.
If something is recursive, to inline it, you would have to know how many times it is executed at compile time. Considering it will be a variable length input, that is not possible.
Yet, doesn't all this dramatically constrain our ability to write code that's simultaneously fast and elegant?
There are certain techniques though that can make recursive calls much, much faster than their normal situation. For example, tail call optimization SO Wiki