Recursion to Iteration conversion - optimization

Knowing that every recursive function can be translated to an iterative version. Can someone help me find the iterative version to this pseudo code? I am trying to optimize the code and recursion is clearly not the way to go
sub calc (a, b )
{
total = 0;
if(b <= 1)
return 1
if( 2*a > CONST)
for i IN (1..CONST)
total += calc(i, b-1) ;
else
for j IN (2*a..CONST)
total += calc(j, b-1) ;
return total;
}
CONST = 100;
print calc (CONST,2000);
Thanks for the help!

A refactoring from recursion to iteration is not the answer to your performance woes here. This algorithm benefits most from caching, in much the same way as the Fibonacci sequence does.
After writing a short test program in F#, with some sample data (CONST = 5, a = 0..10, b = 2..10):
The original program took 6.931 seconds
The cached version took 0.049 seconds
The solution is to keep a dictionary with a key of tuple(a,b) and look up the values before calculating. here is the algorithm with caching:
dictionary = new Dictionary<tuple(int, int), int>();
sub calc (a, b )
{
if (dictionary.Contains(tuple(a,b)))
return dictionary[tuple(a,b)];
else
{
total = 0;
if(b <= 1)
return 1
if( 2*a > CONST)
for i IN (1..CONST)
total += calc(i, b-1);
else
for j IN (2*a..CONST)
total += calc(j, b-1);
dictionary[tuple(a,b)] = total;
return total;
}
}
Edit: just to confirm that it was not the iterative nature of my testing that caused the performance gain, I tried them both again a with a single set of parameters (CONST = 5, a = 6, b = 20).
The cached version took 0.034 seconds
The original version is still running... (2+ minutes)

Only tail recursive algorithms can be converted to iterative algorithms. Your provided code is most definitely not tail recursive and thus it can't be easily convert to iterative form.
The solution to your performance problems is Memoization

Related

How to identify time and space complexity of recursive backtracking algorithms with step-by-step analysis

Background Information: I solved the N-Queens problem with the C# algorithm below, which returns the total number of solutions given the board of size n x n. It works, but I do not understand why this would be O(n!) time complexity, or if it is a different time complexity. I am also unsure of the space used in the recursion stack (but am aware of the extra space used in the boolean jagged array). I cannot seem to wrap my mind around understanding the time and space complexity of such solutions. Having this understanding would be especially useful during technical interviews, for complexity analysis without the ability to run code.
Preliminary Investigation: I have read several SO posts where the author directly asks the community to provide the time and space complexity of their algorithms. Rather than doing the same and asking for the quick and easy answers, I would like to understand how to calculate the time and space complexity of backtracking algorithms so that I can do so moving forward.
I have also read in numerous locations within and outside of SO that generally, recursive backtracking algorithms are O(n!) time complexity since at each of the n iterations, you look at one less item: n, then n - 1, then n - 2, ... 1. However, I have not found any explanation as to why this is the case. I also have not found any explanation for the space complexity of such algorithms.
Question: Can someone please explain the step-by-step problem-solving approach to identify time and space complexities of recursive backtracking algorithms such as these?
public class Solution {
public int NumWays { get; set; }
public int TotalNQueens(int n) {
if (n <= 0)
{
return 0;
}
NumWays = 0;
bool[][] board = new bool[n][];
for (int i = 0; i < board.Length; i++)
{
board[i] = new bool[n];
}
Solve(n, board, 0);
return NumWays;
}
private void Solve(int n, bool[][] board, int row)
{
if (row == n)
{
// Terminate since we've hit the bottom of the board
NumWays++;
return;
}
for (int col = 0; col < n; col++)
{
if (CanPlaceQueen(board, row, col))
{
board[row][col] = true; // Place queen
Solve(n, board, row + 1);
board[row][col] = false; // Remove queen
}
}
}
private bool CanPlaceQueen(bool[][] board, int row, int col)
{
// We only need to check diagonal-up-left, diagonal-up-right, and straight up.
// this is because we should not have a queen in a later row anywhere, and we should not have a queen in the same row
for (int i = 1; i <= row; i++)
{
if (row - i >= 0 && board[row - i][col]) return false;
if (col - i >= 0 && board[row - i][col - i]) return false;
if (col + i < board[0].Length && board[row - i][col + i]) return false;
}
return true;
}
}
First of all, it's definitely not true that recursive backtracking algorithms are all in O(n!): of course it depends on the algorithm, and it could well be worse. Having said that, the general approach is to write down a recurrence relation for the time complexity T(n), and then try to solve it or at least characterize its asymptotic behaviour.
Step 1: Make the question precise
Are we interested in the worst-case, best-case or average-case? What are the input parameters?
In this example, let us assume we want to analyze the worst-case behaviour, and the relevant input parameter is n in the Solve method.
In recursive algorithms, it is useful (though not always possible) to find a parameter that starts off with the value of the input parameter and then decreases with every recursive call until it reaches the base case.
In this example, we can define k = n - row. So with every recursive call, k is decremented starting from n down to 0.
Step 2: Annotate and strip down the code
No we look at the code, strip it down to just the relevant bits and annotate it with complexities.
We can boil your example down to the following:
private void Solve(int n, bool[][] board, int row)
{
if (row == n) // base case
{
[...] // O(1)
return;
}
for (...) // loop n times
{
if (CanPlaceQueen(board, row, col)) // O(k)
{
[...] // O(1)
Solve(n, board, row + 1); // recurse on k - 1 = n - (row + 1)
[...] // O(1)
}
}
}
Step 3: Write down the recurrence relation
The recurrence relation for this example can be read off directly from the code:
T(0) = 1 // base case
T(k) = k * // loop n times
(O(k) + // if (CanPlaceQueen(...))
T(k-1)) // Solve(n, board, row + 1)
= k T(k-1) + O(k)
Step 4: Solve the recurrence relation
For this step, it is useful to know a few general forms of recurrence relations and their solutions. The relation above is of the general form
T(n) = n T(n-1) + f(n)
which has the exact solution
T(n) = n!(T(0) + Sum { f(i)/i!, for i = 1..n })
which we can easily prove by induction:
T(n) = n T(n-1) + f(n) // by def.
= n((n-1)!(T(0) + Sum { f(i)/i!, for i = 1..n-1 })) + f(n) // by ind. hypo.
= n!(T(0) + Sum { f(i)/i!, for i = 1..n-1 }) + f(n)/n!)
= n!(T(0) + Sum { f(i)/i!, for i = 1..n }) // qed
Now, we don't need the exact solution; we just need the asymptotic behaviour when n approaches infinity.
So let's look at the infinite series
Sum { f(i)/i!, for i = 1..infinity }
In our case, f(n) = O(n), but let's look at the more general case where f(n) is an arbitary polynomial in n (because it will turn out that it really doesn't matter). It is easy to see that the series converges, using the ratio test:
L = lim { | (f(n+1)/(n+1)!) / (f(n)/n!) |, for n -> infinity }
= lim { | f(n+1) / (f(n)(n+1)) |, for n -> infinity }
= 0 // if f is a polynomial
< 1, and hence the series converges
Therefore, for n -> infinity,
T(n) -> n!(T(0) + Sum { f(i)/i!, for i = 1..infinity })
= T(0) n!, if f is a polynomial
Step 5: The result
Since the limit of T(n) is T(0) n!, we can write
T(n) ∈ Θ(n!)
which is a tight bound on the worst-case complexity of your algorithm.
In addition, we've proven that it doesn't matter how much work you do within the for-loop in adddition to the recursive calls, as long as it's polynomial, the complexity stays Θ(n!) (for this form of recurrence relations). (In bold because there are lots of SO answers that get this wrong.)
For a similar analysis with a different form of recurrence relation, see here.
Update
I made a mistake in the annotation of the code (I'll leave it because it is still instructive). Actually, both the loop and the work done within the loop do not depend on k = n - row but on the initial value n (let's call it n0 to make it clear).
So the recurrence relation becomes
T(k) = n0 T(k-1) + n0
for which the exact solution is
T(k) = n0^k (T(0) + Sum { n0^(1-i), for i = 1..k })
But since initially n0 = k, we have
T(k) = k^k (T(0) + Sum { n0^(1-i), for i = 1..k })
∈ Θ(k^k)
which is a bit worse than Θ(k!).

My take on Migratory Bird is failing one case

Update: I completely overlooked the complexity added by arr.sort() method. So in Kotlin for array of Int, It compiles to use java.util.DualPivotQuicksort see this which in turn has complexity of O(n^2). see this. Other than that, this is also a valid approach.
I know It can be solved by keeping multiple arrays or using collections (which is what I ended up submitting), I want to know what I missed in the following approach
fun migratoryBirds(arr: Array<Int>): Int {
var maxCount = 0
var maxType = 0
var count = 0
var type = 0
arr.sort()
println(arr.joinToString(" "))
for (value in arr){
if (type != value){
if (count > maxCount){
maxCount = count
maxType = type
}
// new count values
type = value
count = 1
} else {
count++
}
}
return maxType
}
This code passes every scenario except for Test case 2 which has 73966 items for array. On my local machine, that array of 73k+ elements was causing timeout but I did test for array up-to 20k+ randomly generated value 1..5 and every time it succeeded. But I couldn't manage to pass Test case 2 with this approach. So even though I ended up submitting an answer with collection stream approach, I would really like to know what could I be missing in above logic.
I am running array loop only once Complexity should be O(n), So that could not be reason for failing. I am pre-sorting array in ascending order, and I am checking for > not >=, therefore, If two types end up having same count, It will still return the lower of the two types. And this approach is working correctly even for array of 20k+ elements ( I am getting timeout for anything above 25k elements).
The reason it is failing is this line
arr.sort()
Sorting an array takes O(n logn) time. However using something like a hash map this can be solved in O(n) time.
Here is a quick python solution I made to give you the general idea
# Complete the migratoryBirds function below.
def migratoryBirds(arr):
ans = -1
count = -1
dic = {}
for x in arr:
if x in dic:
dic[x] += 1
else:
dic[x] = 1
if dic[x] > count or dic[x] == count and x < ans:
ans = x
count = dic[x]
return ans

What would be complexity of this recursive algorithm

How to calculate the complexity of a bit complicated recursive algorithm like this
in this case what would be the complexity of something(0,n)
void something(int b, int e) {
if (b >= e) return;
int a = 0;
for(int i=b; i < e; i++)
a++;
int k = (b+e)/2;
something(b, k);
something(k+1, e);
}
I tried to analyze this algorithm and think it has complexity is n*ln(n) but still can't get a formal proof.
Initially, loop will run for (e-b) times and it will call itself 2 times, but reducing the size of loop by half
So, ((e-b)/2) will run for 2 iteration; once by (b,(b+e)/2) and again by ((b+e)/2+1,e)
Like wise both iterations will again call themself 2 times, but reducing the iteration length by half.
So `((e-b)/4) will run 4 times, and so on.
The height of the recursion tree will be log(b-e), (each node is having 2 children)
So, time complexity = (b-e) + 2*((b-e)/2) + 4*((b-e)/4) + .....(log(b-e) times)
this expression evaluates to (b-e)*log(b-e)
therefore, time complexity = O(nlogn)

determine the time complexity of the algorithems

I have just started to learn time complexity, but I don't really get the idea, could you help with those questions and explain the way of thinking:
int Fun1(int n)
{
for (i = 0; i < n; i += 1) {
for (j = 0; j < i; j += 1) {
for (k = j; k < i; i += 1) {
// do something
}
}
}
}
void Fun2(int n){
i=o
while(i<n){
for (j = 0; j < i; j += 1) {
k=n
while(k>j){
k=k/2
}
k=j
while(k>1){
k=k/2
}
}
}
int Fun3(int n){
for (i = 0; i < n; i += 1) {
print("*")
}
if(n<=1){
print("*")
return
}
if (n%2 != 0){
Fun3(n-1)
}
else{
Fun3(n/2)
}
}
for function 1, I think its Theta(n^3) because it runs at most
n*n*n times but I am not sure how to prove this.
for the second I think its Theta (n^2log(n))
I am not sure
Could you help, please?
First a quick note, in Fun2(n) there should be a i++ before closing the while loop, anyway, time complexity is important in order to understand the efficiency of your algorithms. In this case you have these 3 functions:
Fun1(n)
In this function you have three nested for loops, each for loops iterates n times over a given input, we know that the complexity of this iteration is O(n). Since there are three nested for loops, the second for loop will iterate n times over each iteration of the outer for loop. The same will do the most inner loop. The resulting complexity, as you correctly said, is O(n) * O(n) * O(n) = O(n^3)
Fun2(n)
This function has a while loop that iterates n times over a given input. So the outer loop complexity is O(n). Same as before we have an inner for loop that iterates n times on each cycle of the outer loop. So far we have O(n) * O(n) which is O(n^2) as complexity. Inside the for loop we have a while loop, that differs from the other loops, since does not iterate on each element in a specific range, but it divides the range by 2 at each iteration. For example from 0 to 31 we have 0-31 -> 0-15 -> 0-7 -> 0-3 -> 0-1
As you know the number of iteration is the result of the logarithmic function, log(n), so we end up with O(n^2) * O(log(n)) = O(n^2(log(n)) as time complexity
Fun3(n)
In this function we have a for loop with no more inner loops, but then we have a recursive call. The complexity of the for loop as we know is O(n), but how many times will this function be called?
If we take a small number (like 6) as example we have a first loop with 6 iteration, then we call again the function with n = 6-1 since 6 mod 2 = 0
Now we have a call to Fun3(5), we do 5 iteration and the recursively we call Fun3(2) since 5 mod 2 != 0
What are we having here? We having a recursive call that in the worst case will call itself n times
The complexity result is O(n!)
Note that when we calculate time complexity we ignore the coefficients since are not relevant, usually the function we consider, especially in CS, are:
O(1), O(n), O(log(n)), O(n^a) with a > 1, O(n!)
and we combine and simplify them in order to know who has the best (lowest) time complexity to have an idea of which algorithm could be used

how much time will fibonacci series will take to compute?

i have created the recursive call tree by applying brute force technique but when i give this algorithm 100 values it takes trillion of years to compute..
what you guys suggest me to do that it runs fast by giving 100 values
here is what i have done so far
function fib(n) {
if (n =< 1) {
return n;
} else {
return fib(n - 1) + fib(n - 2);
}
}
You can do it also with a loop:
int a = 1;
int b = 1;
for(int i = 2; i < 100; i++){
int temp = a + b;
a = b;
b = temp;
}
System.out.println("Fib 100 is: "+b);
The runtime is linear and avoids the overhead caused by the recursive calls.
EDIT: Please note that the result is wrong. Since Fib(100) is bigger than Integer.MAX_VALUE you have to use BigInteger or similar to get the correct output but the "logic" will stay the same.
You could have a "cache", where you save already computed Fibonacci numbers. Every time you try to compute
fib(n-1) /* or */ fib(n-2) ;
You would first look into your array of already computed numbers. If it's there, you save a whole lot of time.
So every time you do compute a fibonacci number, save it into your array or list, at the corresponding index.
function fib(n)
{
if (n =< 1)
{
return n;
}
if(fiboList[n] != defaultValue)
{
return fiboList[n];
}
else
{
int fibo = fib(n-1) + fib(n-2);
fiboList[n] = fibo;
return fibo;
}
}
You can also do it by dynamic programming:
def fibo(n):
dp = [0,1] + ([0]*n)
def dpfib(n):
return dp[n-1] + dp[n-2]
for i in range(2,n+2):
dp[i] = dpfib(i)
return dp[n]