How do I link multiple libraries in a Firebreath plugin? - dll

Does anyone know where I can find a Firebreath sample (either Mac OS X or Windows) that illustrates how to create a plugin that includes 1 or more other libraries (.DLLs or .SOs) that each rely on other sub-projects built as static libraries (LIBs)?
For example, let's say that the Firebreath plugin is called PluginA, and that PluginA calls methods from DLL_B and DLL_C. DLL_B and DLL_C are C++ projects. DLL_B calls methods from another project called LIB_D, and DLL_C calls methods from a project called DLL_E.
Therefore, the final package should contain the following files:
PluginA.dll
DLL_B.dll (which also incorporates LIB_D)
DLL_C.dll
DLL_E.dll
I am currently forced to dump all source files in the pluginA solution, but this is just a bottleneck (for example I cannot call libraries written in other languages, such as Objective-C on Mac OS X).
I tried following the samples on Firebreath, but couldn't get them to work, and I found no samples from other users that claimed they were able to get it to work. I tried using CMAKE, and also running the solutions directly from X-Code, but the end result was the same (received linking errors, after deployment DLL_C couldn't find DLL_E etc.)
Any help would be appreciated - thank you,
Mihnea

You're way overthinking this.
On windows:
DLLs don't depend on a static library because if they did it would have been compiled in when they were built.
DLLs that depend on another DLL generally just need that other DLL to be present in the same location or otherwise in the DLL search path.
Those two things taken into consideration, all you need to do is locate the .lib file that either is the static library or goes with the .dll and add a target_link_library call for each one. There is a page on firebreath.org that explains how to do this.
On linux it's about the same but using the normal rules for finding .so files.

Related

Config.cmake file for custom made shared libraries

I have this project that I have done for experimentation with Qt and shared libraries. This is basically a couple of Qt Widgets from the tutorials for Qt and what I think is the right CMakeLists configuration so a MylibConfig.cmake is automatically generated from a MylibConfig.cmake.in to share the library. The problem is that I don't want the end user to add the dependencies of my library to its own CMakeLists.txt. This is, in my case, the library depends on Qt4, but I want that the end user to not have to do find_package(Qt 4 REQUIRED). Imagine that I want to provide an enclosed functionality to someone that does not need or want to know about what my library is built on. Is there a way in the automatic generation of the MylibConfig.cmake that it automatically finds all necessary packages or is the only option to add the fin package manually in the MylibConfig.cmake.in?
Thank you very much.
In fact, both mentioned projects do find of dependencies from their *Config.cmake files. And nowadays that is the only option -- CMake can't help you to do it "automatically".
So, some way or another, your config module should do the same.
The easy way is to add find_dependency() calls (cuz you know exactly what other packages, your project is based on).
A little bit harder is to do it "automatically" (writing your own helper function) -- for example by inspecting properties of your target(s), "searching" where all that libraries come from and finally generating find_dependency() calls anyway.

Duplicate symbols (two projects in a workspace use the same code)

A is a module project. There are some test targets and the relevant reusable code is compiled in a separate (static library) target. A uses the third party Lumberjack logging library. The Lumberjack code was simply dropped into the project.
B is a different module project, but otherwise it has the same properties as A.
C is the main project. It depends on A and B. It links the libraries of A and B.
Compiling C will result in duplicate Lumberjack symbols.
How can I have multiple separate module projects so that...
they don't know of each other,
use the same third party code,
can be compiled and tested on their own,
included in a main project without duplicate issues?
So, to elaborate on sergio's answer, I was able to succesfully build a test setup as follows.
I included the Lumberjack code in a separate project that builds Lumberjack as a static library.
I created a new project ProjectA with a static library target ModuleA and a test app target DemoA. I copied the Lumberjack project folder into the project folder of ProjectA and then added it as a subproject. I didn't make ModuleA dependent on Lumberjack or link Lumberjack in ModuleA. Instead, I made DemoA dependent on both and link both libraries. This way, I am able to compile the test target, but the library target doesn't include Lumberjack.
I created a second project ProjectB with the analogue setup as ProjectA.
In the main project, I included ProjectA, ProjectB and Lumberjack as subprojects. Unfortunately this will make Lumberjack included 3 times in the main project, which is a little bit inconvenient and ugly (for instance when selecting dependent targets, you can't really tell which one is which).
Finally, I made the main project's target dependent on Lumberjack, ModuleA and ModuleB and link all three libraries. Now, the main project can compile without duplicate symbol error and the submodules can also be compiled and tested on their own.
Since you are targeting OSX, the solution to your issue is building Lumberjack as a framework (as opposed to link the sources code in your A and B modules) and then using that framework wherever it is required (i.e., in any project using A or B modules).
Indeed, Lumberjack already includes a project that will build a Lumberjack.framework, check this: CocoaLumberjack/Xcode/LumberjackFramework/Desktop/Lumberjack.xcodeproj.
Elaborating more on this, you would define your A and B modules as you are doing now, but without dropping Lumberjack source code in it.
What you do instead is, whenever you want to use the A static library in a executable (say, your test target), you add the library to the target and also the lumberjack framework (exactly as you do with OSX SDK frameworks).
Adding the dynamic framework is just a different way to "drop the sources", if you want, but done properly.
When you want to use both A and B in a C project, you add both static libraries and your Lumberjack framework to C.
As you can see, this way of doing will comply with all your four requirements, at the expense of introducing one dependency: you need to make clear in your static libraries documentation that they depend on the Lumberjack framework. This is actually not a big issue, since the latter is available in its own project and any one will be able to build it on his own.
If you want to improve on the handling of this dependencies, cocoapods are the way to go (a cocoapod is a file associated to your library which describes its dependencies, so when you install your library, the cocoapods system will automatically install also the dependencies). But this is highly optional. One single dependency is not a big issue to document or comply with.
Hope this answers your question.
I hate to reference an existing answer but here's one solution that's cumbersome but works: What is the best way to solve an Objective-C namespace collision?
I have this same problem and I'm working on a better solution though. Another idea that might work but I'm not yet sure how to implement it I asked here: Selectively loading classes in Objective-C
A third idea I had because of something someone said on my question was to wrap one of the libraries in a framework and create functions that reference the functions you need. Then load using something like #import <myFramework/MFMyAliases.h>
Have you tried looking at the libraries with ar? If you are very lucky, running for example
ar -t libA.a
gives you a list of files like
__.SYMDEF SORTED
Afile1.o
Afile2.o
Lumberjack1.o
Lumberjack2.o
Afile3.o
SomeOtherLibrary.o
where the Lumberjack files are clearly separable from the rest. Then, you can kick them out
with
a -d Lumberjack1.o Lumberjack2.o
and link C against this trimmed library while using the full library when testing A alone.
I was trying to achieve the same thing before few months and "Easy, Modular Code Sharing Across iPhone Apps: Static Libraries and Cross-Project References" article got all what i needed. please check it out if its useful.
Are A and B binaries?
If not you could simply uncheck the compile checkbox for all *.m files of one of the projects, so as to avoid building duplicate objects.
Also if you could use A and B thorough Cocoapods it would be best.
Try this.
It is sharing libraries/modules between different projects.

Having to Link Binary With Libraries twice when using a static library in XCode

I am trying to use a static library in a project. The static library depends on several frameworks... CoreData, CFNetwork, AddressBook, etc.
The static library also uses categories, so I am forced to use the -all_load linker option in the main project's "Other Linker Settings". When I enable this, I get 120 errors all relating to my main project not being linked with the same frameworks as my static library (CoreData, CFNetwork, AddressBook, etc).
It is very inconvenient for a developer to want to use a static library, link to it, but then still be required to link to all of the frameworks that the library links to. Is there any way to automate this process, so that the main project automatically links to all of the frameworks linked to by the static library?
I am using XCode 4.4.
edit: to be more clear, I have the following:
StaticLibrary.xcodeproj
- AFNetworking
- files...
- CoreData
- categories for NSManagedObjectContext, for convenience
- AddressBook
- convenience methods for working with contacts
This project's target is linked to the necessary frameworks under Build Phases > Link Binary With Libraries. This includes CoreData.framework, AddressBook.framework, etc.
Now what I would like to do is add this library to another project of mine. In fact, I would like to add this library to every new project I make from here on out, so I always have easy access to the convenience functions/categories that I've written. So: I add the library to my project, and then add the .a file to Build Phases > Link Binary With Libraries (of my main project). I also do everything else necessary that I know of (see comments).
What I would like to happen: the main project is now linked to the library, so it inherits all of the library's links so that the main project is now also linked to CoreData.framework, AddressBook.framework, etc.
What does happen: the main project gives me errors because it is not linked to anything that the library requires.
Is there a way to automatically add the linked frameworks from the static library to the main project, or should I split the library up into CoreDataStaticLibrary, etc, and then require the developer to add CoreData.framework as well as the static library to the project target everytime?
As I understand, you should only need -all_load if your library contains only categories. Otherwise, you can use -ObjC. That's what I use, at any rate.
Also, when you build a static library, you are just creating an archive of compiled object modules. No external dependencies are resolved in the library. Really, you should just think of it as a single collection of a bunch of object code files.
So, when you finally link your executable, it will link all your compiled code, along with the archive of pre-compiled code in your static libraries. The linker will expect to resolve all symbols, so you must tell it where to find all the libraries (frameworks) that are needed to completely resolve all the symbols.
Should XCode be able to look inside a static-library subproject and pull out the framework dependencies from that project and add them to the linker invocation for the final project? Sure. But, I'm not aware of a way to make that happen automatically.
If you want, you can create a podfile for your library, and use CocoaPods to manage your project dependencies.
The problem is you're including the same symbols several times. I've run into the same issue several times and the solution is basically to understand what the "-all_load" flag does, which is pretty well explained in this SO question: What does the all load linked flag do
Said that, you never reference frameworks from your library in that way. Since these frameworks are dynamically linked they don't really belong to your static library, there are just references pointing to them on it.
The user of such library should be responsible of adding the necessary frameworks to make it work properly. This means, you don't have to link your library to such frameworks (as such thing just doesn't make sense), just add them to project that's gonna use it. (Have a look on Restkit to see how it's done).
Also, I think you could get rid of the "all_load" flag and try to replace it with "force_load /path/to/the/library" all_load is only necessary in case your library only contains categories (no classes at all).
Let us know how it goes and happy coding!

how to import COM dll in D

I'm trying to create an D application which uses a (third party) COM .dll so I can scrape a text box of another application so I can sound an error when a certain string shows up.
However the third party doesn't provide .lib, .def or .h files that go with the dll (atleast with the free trial version). I can create the .lib file with the implib tool but I don't see any of the library's functions in the created .lib.
Their (visual c++) samples use the #import directive to link it in however that is of no use for me ...
On a side note how can I get the proper interfaces (in a .di with boilerplate that does the linking) of the dll automatically? I ask so the correctness of the linkage doesn't depend on my (likely to be incorrect) translation of the functions. They do have a webpage which gives all functions but the object model is a bit chaotic to say the least.
From what I know, COM libraries only expose a few functions, required to (un)register the library and to create objects.
You can however view the interfaces and functions in a COM .dll using the OLE/COM Object Viewer. It seems it might be able to output header files (.h). Afterwards, maybe you could use htod as a starting point to converting everything to D interfaces.
The DMD distribution seems to include a .COM sample (chello.d, dclient.d, dserver.d), and at first glance it doesn't look like it would require any LIBs explicitly.
Unfortunately, I've never actually used COM in D, so I can't advise any further. I hope this helps in some way.
While I have yet to actually do COM work myself, I am trying to revive Juno over on Github/he-the-great. Part of the project is tlbimpd which is what will output a D file from a DLL.
I've tested the examples and successfully run tlbimpd. Please do try things out for your use and submit any issues.

Meaning of building a dll as export library

What is the meaning of building a dll as export library ? I just googled it.I found its a dynamic link library.Can anyone please explain what actually dll is ? and why do we need to add these statement in the .dll file
extern "c" _declspec(dllexport)
I studied the static and shared libraries but Im not sure why do we go for dll files.I learnt .dll is used for the run time. But can you help me and give me more information.Thank you in advance
I may have been a bit harsh in my comments. I am not an authority on dlls, but I have a bit of working knowledge of them, so I will try to give a short explanation.
The difference between static and shared libraries should be easy to find in a web search, but basically the code in a static library gets included into the final executable, so after the linking stage, the actual library file is not needed anymore to run the program; on the other hand, code in a shared library doesn't get included in the main program - the two parts remain separate, so the shared library (called dll on windows) will be needed every time the program is run.
"Building a dll as export library" is a bit of a confusing term. I had not heard of it before, and during a short search could only find it on a cygwin page, which you might have read, considering your initial tags. A dll can export some or all of its functions and data. Exporting means that they are available for other programs and dlls to use. Which names get exported can be controlled in various ways. One of those is inserting _declspec(dllexport) in the declaration of the function. Another way is by using a definition file with an exports section.
When creating a dll, an import library can be created. This is a file that can then be used when building an executable that uses the dll, during the linking stage, to let it know which names are exported from the dll, so the program knows how to resolve references to those functions; in other words: how to import them. (This is not always necessary. Many linkers allow you to directly link against the dll itself, thereby removing the need for an import library.)
I realize it can be confusing, but try to find a tutorial and some small examples to see how it works, and play with it a bit.