Difference between INCLUDE and modules in Fortran - module

What are the practical differences between using modules with the use statement or isolated files with the include statement? I mean, if I have a subroutine that is used a lot throughout a program: when or why should I put it inside a module or just write it in a separate file and include it in every other part of the program where it needs to be used?
Also, would it be good practice to write all subroutines intended to go in a module in separate files and use include inside the module? Specially if the code in the subroutines is long, so as to keep the code better organized (that way all subroutines are packed in the mod, but if I have to edit one I don't need to go though a maze of code).

The conceptual differences between the two map through to very significant practical differences.
An INCLUDE line operates at the source level - it accomplishes simple ("dumb") text inclusion. In the absence of any special processor interpretation of the "filename" (no requirement for that actually to be a file) in the include line the complete source could quite easily be manually spliced together by the programmer and fed to the compiler with no difference what-so-ever in the semantics of the source. Included source has no real interpretation in isolation - its meaning is completely dependent on the context in which the include line that references the included source appears.
Modules operate at the much higher entity level of the program, i.e. at the level where the compiler is considering the things that the source actually describes. A module can be compiled in isolation of its downstream users and once it has been compiled the compiler knows exactly what things the module can provide to the program.
Typically what someone using include lines is hoping to do is what modules were actually designed to do.
Example issues:
Because entity declarations can be spread over multiple statements the entities described by included source might not be what you expect. Consider the following source to be included:
INTEGER :: i
In isolation it looks like this declares the name i as an integer scalar (or perhaps a function? Who knows!). Now consider the following scope that includes the above:
INCLUDE "source from above"
DIMENSION :: i(10,10)
i is now a rank two array! Perhaps you want to make it a POINTER? An ALLOCATABLE? A dummy argument? Perhaps that results in an error, or perhaps it is valid source! Throw implicit typing into the mix to really compound the potential fun.
An entity defined in a module is "completely" defined by the module. Attributes that are specific to the scope of use can be changed (VOLATILE, accessibility, etc), but the fundamental entity remains the same. Name clashes are explicitly called out and can be easily worked around with a rename clause on the USE statement.
Fortran has restrictions on statement ordering (specification statements must go before executable statements, etc.). Included source is also subject to those restrictions, again in the context of the point of inclusion, not the point of source definition.
Mix well with source ambiguity between statement function definitions (specification part) and assignment statements (executable part) for some completely obtuse error messages or, worse, silent acceptance by the compiler of erroneous code.
There are requirements on where the USE statement that references a module appears, but the source for the actual module program unit is completely independent of its point of use.
Fancy having some global state to be shared across related procedures and you want to use include? Let me introduce you to common blocks and the associated underlying concept of sequence association...
Sequence association is a unfortunate bleed-through of early underlying Fortran processor implementation that is an error prone, inflexible, anti-optimisation anachronism.
Module variables make common blocks and their associated evils completely unnecessary.
If you were using include lines, then note that you don't actually include the source of a commonly used procedure (the suggestion in your first paragraph is just going to result in a morass of syntax errors from the compiler). What you would typically do is include source that describes the interface of the procedure. For any non-trivial procedure the source that describes the interface is different from the complete source of the procedure - implying that you now need to maintain two source representations of the same thing. This is an error prone maintenance burden.
As mentioned - the compilers automatically gains knowledge of the interface of a module procedure (the compiler knowledge is "explicit" because it actually saw the procedure's code - hence the term "explicit interface"). No need for the programmer to do anything more.
A consequence of the above is that external subprograms should not be used at all unless there are very good reasons to the contrary (perhaps the existence of circular or excessively extensive dependencies) - the basic starting point should be to put everything in a module or main program.
Other posters have mentioned the source code organisation benefits of modules - including the ability to group related procedures and other "stuff" into the one package, with control over accessibility of internal implementation details.
I accept there is a valid use of INCLUDE lines as per the second paragraph of the question - where large modules become unwieldy in size. F2008 has addressed this with submodules, which also bring a number of other benefits. Once they become widely supported the include line work-around should be abandoned.
A second valid use is to overcome a lack of support by the language for generic programming techniques (what templates provide in C++) - i.e. where the types of objects involved in an operation may vary, but the token sequence that describes what to do on those objects is essentially the same. It might be another decade or so before the language sorts that out.

Placing procedures into modules and using those modules makes the interface of the procedure explicit. It allows a Fortran compiler to check for consistency between the actual arguments in a call and the dummy arguments of the procedure. This guards against a variety of programmer mistakes. An explicit interface is also necessary for certain "advanced" features of Fortran >=90; for example, optional or keyword arguments. Without the explicit interface, the compiler won't generate the correct call. Merely including a file doesn't provide these advantages.

M.S.B.'s answer is great and is probably the most important reason to prefer modules over include. I'd like to add a few more thoughts.
Using modules reduces your compiled binary size if that is something that is important to you. A module is compiled once, and when you use it you are symbolically loading that module to use the code. When you include a file, you are actually inserting the new code into your routine. If you use include a lot it can cause your binary to be large and also increase your compile time.
You can also use modules to fake OOP style coding in Fortran 90 through clever use of public and private functions and user defined types in a module. Even if you didn't want to do that, it provides a nice way to group functions that logically belong together.

Related

Why is adding methods to a type different than adding a sub or an operator in perl6?

Making subs/procedures available for reuse is one core function of modules, and I would argue that it is the fundamental way how a language can be composable and therefore efficient with programmer time:
if you create a type in your module, I can create my own module that adds a sub that operates on your type. I do not have to extend your module to do that.
# your module
class Foo {
has $.id;
has $.name;
}
# my module
sub foo-str(Foo:D $f) is export {
return "[{$f.id}-{$f.name}]"
}
# someone else using yours and mine together for profit
my $f = Foo.new(:id(1234), :name("brclge"));
say foo-str($f);
As seen in Overloading operators for a class this composability of modules works equally well for operators, which to me makes sense since operators are just some kinda syntactic sugar for subs anyway (in my head at least). Note that the definition of such an operator does not cause any surprising change of behavior of existing code, you need to import it into your code explicitly to get access to it, just like the sub above.
Given this, I find it very odd that we do not have a similar mechanism for methods, see e.g. the discussion at How do you add a method to an existing class in Perl 6?, especially since perl6 is such a method-happy language. If I want to extend the usage of an existing type, I would want to do that in the same style as the original module was written in. If there is a .is-prime on Int, it must be possible for me to add a .is-semi-prime as well, right?
I read the discussion at the link above, but don't quite buy the "action at a distance" argument: how is that different from me exporting another multi sub from a module? for example the rust way of making this a lexical change (Trait + impl ... for) seems quite hygienic to me, and would be very much in line with the operator approach above.
More interesting (to me at least) than the technicalities is the question if language design: isn't the ability to provide new verbs (subs, operators, methods) for existing nouns (types) a core design goal for a language like perl6? If it is, why would it treat methods differently? And if it does treat them differently for a good reason, does that not mean we are using way to many non-composable methods as nouns where we should be using subs instead?
From a language design perspective, it all comes down to a simple question: which language are we speaking? In Perl 6, this is a question about which we always try to be very clear.
The notion of ones current language in Perl 6 is defined entirely in terms of lexical scope. Sub declarations are lexically scoped. When we import symbols from a module, including extra multi candidates, those are lexically scoped. When we perform language tweaks - such as introducing new operators - those are lexically scoped. Verbs in our current language - that is, subroutine calls - are those with a lexical definition. (Operators are simply sub calls with more interesting parsing.) Since lexical scopes are closed at the end of compile time, the compiler has a complete view of the current language. That's why sub calls to non-existent subs, or references to undeclared variables, are detected and reported at compile time, as well as some basic compile-time type checking; future Perl 6 versions are likely to extend the set of compile-time checks that can be expected. The current language is the static, early-bound, part of Perl 6.
By contrast, a method call is a verb to be interpreted in the target object's language. This is the dynamic, late-bound, part of Perl 6. While the most immediate result of that is the typical polymorphism found in various forms in implementations of OO, thanks to meta-programming even the manner in which a verb is interpreted is up for grabs. For example, a monitor will acquire a lock while it interprets the verb and release it afterwards. Other objects might have been constructed based on things other than Perl 6 code, and so the interpretation of a verb doesn't mean invoking code written as a Perl 6 method. Or the code might be somewhere over the network. Who knows? Well, certainly not the caller, and that's the point, and the power, and the risk, of late binding.
The Perl 6 answer to "I want to extend the range of verbs I can use with this object in my current language" is very simple: use language features that relate to extending the current language! There's even a special syntax, $obj.&foo, that allows for a verb foo to be defined in the current language - by writing a sub - and then invoked much as if it's a method on the object. However, the small syntactic distinction makes it clear to the reader - and to the compiler - what is going on, and which language is getting to define that verb.
Through the use of augment it is possible to extend the language defined by some type of objects. However, it's rarely the best way to do things, given that it will have global effect, and also scatter the definition of the language of the object.
Much of what we do in programming is about building languages. By that I don't mean new syntax; most of our new languages - even in a language as open to mutation as Perl 6 - are just nouns and verbs defined using standard language features. However, in any non-trivial program, we can't keep every detail of every language in mind at once. When I go to the restaurant and order a schnitzel, I don't know how the order will be transported to the kitchen, what the kitchen looks like, whether the schnitzel is hammered out, breaded, and cooked on demand, or just served from a (hopefully not too stale) cache of prepared schnitzels. The kitchen and I have just enough shared meaning to make the right kind of thing happen, but I don't know how they'll precisely react to my request and they need not know what I'll do in the meantime. This kind of thinking is acknowledged by OO itself - at least when we fully embrace it - and at a larger scale by concepts such as bounded contexts, as found in Domain Driven Design.
In summary, Perl 6 tries to help us keep our languages straight: to know what is in our current language, and what we express with only limited understanding. That distinction is encoded by the sub/method distinction, which also turns out to be a sensible place to hang a static/dynamic distinction too.

Compile function with curry in groovy

I want to provide some functionality for compiling sources of a specific kind (e.g. java).
As the process of compilation needs additional information i need to give in some more arguments and not only the sourcefile. E.g. working directory, compiler parameters and so on.
There are two ways in my mind how to design it:
Using OOP, that means creating a compiler class, saving the
additional arguments when constructing a specific compiler object
that can then be used for compiling by just providing the sourcefile
Not creating a class for creating objects but just a (static final?)
closure in a class and then using curry to pass in the needed
arguments and returning another compile function which can then be
provided by for example just the sourcefile to compile it
What are the pros and cons? Is there maybe an even better way to get things done?
According to me it only depends on if this should be done well or it's just a kind of a proof of concept. If there will be multiple source files with different types, then it's better to create well-designed, robust class hierarchy. Otherwise You can use a bunch a predefined closures if suites your needs.
Mind the fact that these two solutions are not mutually exclusive. You can still create a robust class hierarchy that will be using predefined closures internally.

Is there a way to determine unused functions in Xcode4?

I know that functions can be called dynamically, but is there a way to determine statically which functions (and methods of ObjC objects) are not being called?
I'm not sure that this is a sensible thing for someone to have attempted to make such a static analysis tool - it would be very complicated, and you would probably find that it would only find trvial examples of functions that would not be called - e.g. functions you've created in your classes, and you have no calls to them. All the stuff that interacts with Cocoa ... well the problem is that they 'might' be called in different circumstances.
In any case, what you should really be interested in is runtime code coverage - as this would show you (with a decent suite of tests) what code is actually being used, which would be a smaller subset.
objc_cover will help you spotting potentially unused Objective-C methods.
add -Wunused-function to your list of WARNING_CFLAGS.
this also considers functions taken by address as referenced (ideal for normal usage). then compile your program with gcc and clang for optimal coverage.
note that this flag does not cover all cases (e.g. exported functions), and it focuses primarily on functions which have internal linkage. diffing using strip and nm can help isolate external symbols -- i don't know of a good tool for this exact process.
if you want to locate unused objc methods, you should reword your question.

Naming convention and structure for utility classes and methods

Do you have any input on how to organize and name utility classes?
Whenever I run in to some code-duplication, could be just a couple of code lines, I move them to a utility class.
After a while, I tend to get a lot of small static classes, usually with only one method, which I usualy put in a utility namespace that gets bloated with classes.
Examples:
ParseCommaSeparatedIntegersFromString( string )
CreateCommaSeparatedStringFromIntegers( int[] )
CleanHtmlTags( string )
GetListOfIdsFromCollectionOfX( CollectionX )
CompressByteData( byte[] )
Usually, naming conventions tell you to name your class as a Noun. I often end up with a lot of classes like HtmlHelper, CompressHelper but they aren't very informative. I've also tried being really specific like HtmlTagCleaner, which usualy ends up with one class per utility method.
Have you any ideas on how to name and group these helper methods?
I believe there is a continuum of complexity, therefore corresponding organizations. Examples follow, choose depending of the complexity of your project and your utilities, and adapt to other constraints :
One class (called Helper), with a few methods
One package (called helper), with a few classes (called XXXHelper), each class with a few methods.
Alternatively, the classes may be split in several non-helper packages if they fit.
One project (called helper), with a few packages (called XXX), each package with ...
Alternatively, the packages can be split in several non-helper packages if they fit.
Several helper projects (split by tier, by library in use or otherwise)...
At each grouping level (package, class) :
the common part of the meaning is the name of the grouping name
inner codes don't need that meaning anymore (so their name is shorter, more focused, and doesn't need abbreviations, it uses full names).
For projects, I usually repeat the common meaning in a superpackage name. Although not my prefered choice in theory, I don't see in my IDE (Eclipse) from which project a class is imported, so I need the information repeated. The project is actually only used as :
a shipping unit : some deliverables or products will have the jar, those that don't need it won't),
to express dependencies : for example, a business project have no dependency on web tier helpers ; having expressed that in projects dependencies, we made an improvement in apparent complexity, good for us ; or finding such a dependency, we know something is wrong, and start to investigate... ; also, by reducing the dependencies, we may accelerate compilation and building ....
to categorize the code, to find it faster : only when it's huge, I'm talking about thousands of classes in the project
Please note that all the above applies to dynamic methods as well, not only static ones.
It's actually our good practices for all our code.
Now that I tried to answer your question (although in a broad way), let me add another thought
(I know you didn't ask for that).
Static methods (except those using static class members) work without context, all data have to be passed as parameters. We all know that, in OO code, this is not the preferred way. In theory, we should look for the object most relevant to the method, and move that method on that object. Remember that code sharing doesn't have to be static, it only has to be public (or otherwise visible).
Examples of where to move a static method :
If there is only one parameter, to that parameter.
If there are several parameters, choose between moving the method on :
the parameter that is used most : the one with several fields or methods used, or used by conditionals (ideally, some conditionnals would be removed by subclasses overriding) ...
one existing object that has already good access to several of the parameters.
build a new class for that need
Although this method moving may seem for OO-purist, we find this actually helps us in the long run (and it proves invaluable when we want to subclass it, to alter an algorithm). Eclipse moves a method in less than a minute (with all verifications), and we gain so much more than a minute when we look for some code, or when we don't code again a method that was coded already.
Limitations : some classes can't be extended, usually because they are out of control (JDK, libraries ...). I believe this is the real helper justification, when you need to put a method on a class that you can't change.
Our good practice then is to name the helper with the name of the class to extend, with Helper suffix. (StringHelper, DateHelper). This close matching between the class where we would like the code to be and the Helper helps us find those method in a few seconds, even without knowledge if someone else in our project wrote that method or not.
Helper suffix is a good convention, since it is used in other languages (at least in Java, IIRC rails use it).
The intent of your helper should be transported by the method name, and use the class only as placeholder. For example ParseCommaSeparatedIntegersFromString is a bad name for a couple of reasons:
too long, really
it is redundant, in a statically typed language you can remove FromString suffix since it is deduced from signature
What do you think about:
CSVHelper.parse(String)
CSVHelper.create(int[])
HTMLHelper.clean(String)
...

What is the best way to solve an Objective-C namespace collision?

Objective-C has no namespaces; it's much like C, everything is within one global namespace. Common practice is to prefix classes with initials, e.g. if you are working at IBM, you could prefix them with "IBM"; if you work for Microsoft, you could use "MS"; and so on. Sometimes the initials refer to the project, e.g. Adium prefixes classes with "AI" (as there is no company behind it of that you could take the initials). Apple prefixes classes with NS and says this prefix is reserved for Apple only.
So far so well. But appending 2 to 4 letters to a class name in front is a very, very limited namespace. E.g. MS or AI could have an entirely different meanings (AI could be Artificial Intelligence for example) and some other developer might decide to use them and create an equally named class. Bang, namespace collision.
Okay, if this is a collision between one of your own classes and one of an external framework you are using, you can easily change the naming of your class, no big deal. But what if you use two external frameworks, both frameworks that you don't have the source to and that you can't change? Your application links with both of them and you get name conflicts. How would you go about solving these? What is the best way to work around them in such a way that you can still use both classes?
In C you can work around these by not linking directly to the library, instead you load the library at runtime, using dlopen(), then find the symbol you are looking for using dlsym() and assign it to a global symbol (that you can name any way you like) and then access it through this global symbol. E.g. if you have a conflict because some C library has a function named open(), you could define a variable named myOpen and have it point to the open() function of the library, thus when you want to use the system open(), you just use open() and when you want to use the other one, you access it via the myOpen identifier.
Is something similar possible in Objective-C and if not, is there any other clever, tricky solution you can use resolve namespace conflicts? Any ideas?
Update:
Just to clarify this: answers that suggest how to avoid namespace collisions in advance or how to create a better namespace are certainly welcome; however, I will not accept them as the answer since they don't solve my problem. I have two libraries and their class names collide. I can't change them; I don't have the source of either one. The collision is already there and tips on how it could have been avoided in advance won't help anymore. I can forward them to the developers of these frameworks and hope they choose a better namespace in the future, but for the time being I'm searching a solution to work with the frameworks right now within a single application. Any solutions to make this possible?
Prefixing your classes with a unique prefix is fundamentally the only option but there are several ways to make this less onerous and ugly. There is a long discussion of options here. My favorite is the #compatibility_alias Objective-C compiler directive (described here). You can use #compatibility_alias to "rename" a class, allowing you to name your class using FQDN or some such prefix:
#interface COM_WHATEVER_ClassName : NSObject
#end
#compatibility_alias ClassName COM_WHATEVER_ClassName
// now ClassName is an alias for COM_WHATEVER_ClassName
#implementation ClassName //OK
//blah
#end
ClassName *myClass; //OK
As part of a complete strategy, you could prefix all your classes with a unique prefix such as the FQDN and then create a header with all the #compatibility_alias (I would imagine you could auto-generate said header).
The downside of prefixing like this is that you have to enter the true class name (e.g. COM_WHATEVER_ClassName above) in anything that needs the class name from a string besides the compiler. Notably, #compatibility_alias is a compiler directive, not a runtime function so NSClassFromString(ClassName) will fail (return nil)--you'll have to use NSClassFromString(COM_WHATERVER_ClassName). You can use ibtool via build phase to modify class names in an Interface Builder nib/xib so that you don't have to write the full COM_WHATEVER_... in Interface Builder.
Final caveat: because this is a compiler directive (and an obscure one at that), it may not be portable across compilers. In particular, I don't know if it works with the Clang frontend from the LLVM project, though it should work with LLVM-GCC (LLVM using the GCC frontend).
If you do not need to use classes from both frameworks at the same time, and you are targeting platforms which support NSBundle unloading (OS X 10.4 or later, no GNUStep support), and performance really isn't an issue for you, I believe that you could load one framework every time you need to use a class from it, and then unload it and load the other one when you need to use the other framework.
My initial idea was to use NSBundle to load one of the frameworks, then copy or rename the classes inside that framework, and then load the other framework. There are two problems with this. First, I couldn't find a function to copy the data pointed to rename or copy a class, and any other classes in that first framework which reference the renamed class would now reference the class from the other framework.
You wouldn't need to copy or rename a class if there were a way to copy the data pointed to by an IMP. You could create a new class and then copy over ivars, methods, properties and categories. Much more work, but it is possible. However, you would still have a problem with the other classes in the framework referencing the wrong class.
EDIT: The fundamental difference between the C and Objective-C runtimes is, as I understand it, when libraries are loaded, the functions in those libraries contain pointers to any symbols they reference, whereas in Objective-C, they contain string representations of the names of thsoe symbols. Thus, in your example, you can use dlsym to get the symbol's address in memory and attach it to another symbol. The other code in the library still works because you're not changing the address of the original symbol. Objective-C uses a lookup table to map class names to addresses, and it's a 1-1 mapping, so you can't have two classes with the same name. Thus, to load both classes, one of them must have their name changed. However, when other classes need to access one of the classes with that name, they will ask the lookup table for its address, and the lookup table will never return the address of the renamed class given the original class's name.
Several people have already shared some tricky and clever code that might help solve the problem. Some of the suggestions may work, but all of them are less than ideal, and some of them are downright nasty to implement. (Sometimes ugly hacks are unavoidable, but I try to avoid them whenever I can.) From a practical standpoint, here are my suggestions.
In any case, inform the developers of both frameworks of the conflict, and make it clear that their failure to avoid and/or deal with it is causing you real business problems, which could translate into lost business revenue if unresolved. Emphasize that while resolving existing conflicts on a per-class basis is a less intrusive fix, changing their prefix entirely (or using one if they're not currently, and shame on them!) is the best way to ensure that they won't see the same problem again.
If the naming conflicts are limited to a reasonably small set of classes, see if you can work around just those classes, especially if one of the conflicting classes isn't being used by your code, directly or indirectly. If so, see whether the vendor will provide a custom version of the framework that doesn't include the conflicting classes. If not, be frank about the fact that their inflexibility is reducing your ROI from using their framework. Don't feel bad about being pushy within reason — the customer is always right. ;-)
If one framework is more "dispensable", you might consider replacing it with another framework (or combination of code), either third-party or homebrew. (The latter is the undesirable worst-case, since it will certainly incur additional business costs, both for development and maintenance.) If you do, inform the vendor of that framework exactly why you decided to not use their framework.
If both frameworks are deemed equally indispensable to your application, explore ways to factor out usage of one of them to one or more separate processes, perhaps communicating via DO as Louis Gerbarg suggested. Depending on the degree of communication, this may not be as bad as you might expect. Several programs (including QuickTime, I believe) use this approach to provide more granular security provided by using Seatbelt sandbox profiles in Leopard, such that only a specific subset of your code is permitted to perform critical or sensitive operations. Performance will be a tradeoff, but may be your only option
I'm guessing that licensing fees, terms, and durations may prevent instant action on any of these points. Hopefully you'll be able to resolve the conflict as soon as possible. Good luck!
This is gross, but you could use distributed objects in order to keep one of the classes only in a subordinate programs address and RPC to it. That will get messy if you are passing a ton of stuff back and forth (and may not be possible if both class are directly manipulating views, etc).
There are other potential solutions, but a lot of them depend on the exact situation. In particular, are you using the modern or legacy runtimes, are you fat or single architecture, 32 or 64 bit, what OS releases are you targeting, are you dynamically linking, statically linking, or do you have a choice, and is it potentially okay to do something that might require maintenance for new software updates.
If you are really desperate, what you could do is:
Not link against one of the libraries directly
Implement an alternate version of the objc runtime routines that changes the name at load time (checkout the objc4 project, what exactly you need to do depends on a number of the questions I asked above, but it should be possible no matter what the answers are).
Use something like mach_override to inject your new implementation
Load the new library using normal methods, it will go through the patched linker routine and get its className changed
The above is going to be pretty labor intensive, and if you need to implement it against multiple archs and different runtime versions it will be very unpleasant, but it can definitely be made to work.
Have you considered using the runtime functions (/usr/include/objc/runtime.h) to clone one of the conflicting classes to a non-colliding class, and then loading the colliding class framework? (this would require the colliding frameworks to be loaded at different times to work.)
You can inspect the classes ivars, methods (with names and implementation addresses) and names with the runtime, and create your own as well dynamically to have the same ivar layout, methods names/implementation addresses, and only differ by name (to avoid the collision)
Desperate situations call for desperate measures. Have you considered hacking the object code (or library file) of one of the libraries, changing the colliding symbol to an alternative name - of the same length but a different spelling (but, recommendation, the same length of name)? Inherently nasty.
It isn't clear if your code is directly calling the two functions with the same name but different implementations or whether the conflict is indirect (nor is it clear whether it makes any difference). However, there's at least an outside chance that renaming would work. It might be an idea, too, to minimize the difference in the spellings, so that if the symbols are in a sorted order in a table, the renaming doesn't move things out of order. Things like binary search get upset if the array they're searching isn't in sorted order as expected.
#compatibility_alias will be able to solve class namespace conflicts, e.g.
#compatibility_alias NewAliasClass OriginalClass;
However, this will not resolve any of the enums, typedefs, or protocol namespace collisions. Furthermore, it does not play well with #class forward decls of the original class. Since most frameworks will come with these non-class things like typedefs, you would likely not be able to fix the namespacing problem with just compatibility_alias.
I looked at a similar problem to yours, but I had access to source and was building the frameworks.
The best solution I found for this was using #compatibility_alias conditionally with #defines to support the enums/typedefs/protocols/etc. You can do this conditionally on the compile unit for the header in question to minimize risk of expanding stuff in the other colliding framework.
It seems that the issue is that you can't reference headers files from both systems in the same translation unit (source file). If you create objective-c wrappers around the libraries (making them more usable in the process), and only #include the headers for each library in the implementation of the wrapper classes, that would effectively separate name collisions.
I don't have enough experience with this in objective-c (just getting started), but I believe that is what I would do in C.
Prefixing the files is the simplest solution I am aware of.
Cocoadev has a namespace page which is a community effort to avoid namespace collisions.
Feel free to add your own to this list, I believe that is what it is for.
http://www.cocoadev.com/index.pl?ChooseYourOwnPrefix
If you have a collision, I would suggest you think hard about how you might refactor one of the frameworks out of your application. Having a collision suggests that the two are doing similar things as it is, and you likely could get around using an extra framework simply by refactoring your application. Not only would this solve your namespace problem, but it would make your code more robust, easier to maintain, and more efficient.
Over a more technical solution, if I were in your position this would be my choice.
If the collision is only at the static link level then you can choose which library is used to resolve symbols:
cc foo.o -ldog bar.o -lcat
If foo.o and bar.o both reference the symbol rat then libdog will resolve foo.o's rat and libcat will resolve bar.o's rat.
Just a thought.. not tested or proven and could be way of the mark but in have you considered writing an adapter for the class's you use from the simpler of the frameworks.. or at least their interfaces?
If you were to write a wrapper around the simpler of the frameworks (or the one who's interfaces you access the least) would it not be possible to compile that wrapper into a library. Given the library is precompiled and only its headers need be distributed, You'd be effectively hiding the underlying framework and would be free to combine it with the second framework with clashing.
I appreciate of course that there are likely to be times when you need to use class's from both frameworks at the same time however, you could provide factories for further class adapters of that framework. On the back of that point I guess you'd need a bit of refactoring to extract out the interfaces you are using from both frameworks which should provide a nice starting point for you to build your wrapper.
You could build upon the library as you and when you need further functionality from the wrapped library, and simply recompile when you it changes.
Again, in no way proven but felt like adding a perspective. hope it helps :)
If you have two frameworks that have the same function name, you could try dynamically loading the frameworks. It'll be inelegant, but possible. How to do it with Objective-C classes, I don't know. I'm guessing the NSBundle class will have methods that'll load a specific class.