It is said that programmers should prefer composition over inheritance. I was wondering if RTTI can be achieved as easily using composition?
I think perhaps I understand your problem now, although I believe you are coming at it from the wrong angle. In an inheritance tree you can check the type of an object using RTTI, whereas with no inheritance tree (using composition instead) there is no need because you will only have one possible type. You can then set up properties or methods to indicate the 'type' of your object, although in true OOP you should not need to check a type, rather you should let polymorphism deal with it.
In a composite object, method calls are forwarded to its children; in an inheritance tree, method calls are virtual and are handled by derived classes.
Related
I have read a definition of encapsulation which stated that "Encapsulation is the wrapping of data and functions into a single unit called class" .My question is that can we not use the term object instead of class in the definition because at last objects are created using the classes and objects only encapsulate data and functions inside them?
I don't have a problem with replacing "class" with "object" in the example sentence. It remains valid in class-based OOP languages while being more appropriate for prototype-based OOP languages. Classes are just a type system for OOP after all and not as fundamentally essential as encapsulation is.
I would, however, want to improve that sentence to make it clear that data and functions aren't "wrapped" in the same way. Data must be hidden and only be accessible to methods of an object.
The more important question to consider is why encapsulation is essential to true oop. Objects are to hide their attributes and inner workings, and present an interface for use by other objects. oop begins to break down when this encapsulation is broken. Code becomes harder to maintain if everyone has their hands on everyone else’s data. Consider setters and getters and all the ways we tend to break encapsulation. True object thinking is not primarily about classes and polymorphism. It is definitely about encapsulation and interfacing between objects.
Not every class has objects.
We can have static classes that have no objects.
If the definition were changed to use the word "object", these classes would not be covered. With "class", both static and non static classes are covered.
Even if a class is not static, it could have static data and functionality, again the term class is more appropriate.
Other classes may be abstract and therefore have no objects, they may still provide some encapsulation.
Template classes could also be though of as being capable of encapsulation even though there will be no objects of the template itself - only objects of "concrete" classes with specific types provided for the templates type parameters.
Also, the word "single" becomes a bit confusing if we apply it to objects since we can have multiple object of a class.
Cid's comment offers an additional reason for "class" over "object".
I assume you have a rough idea of what encapsulation is? So you are asking why couldn't the definition bee rephrased to
Encapsulation is the wrapping of data and functions into a single unit called an object.
Because encapsulation has nothing to do with objects at all. You can create some class called Car and it has some fields like engine, seats, steeringWheel and some methods applyBrakes, openWindow as well as some private members. Now you can say that the class encapsulates the inner workings of a car into a single unit - the Car class.
See? I didn't say anything about objects. Car objects are really just a bunch of references in memory pointing to other Engine, Seat and SteeringWheel objects.
In my opinion, "data" is the problematic term. Classes encapsulate attributes and methods that work on these attributes together. "data" suggests actual data and not meta data. That is probably why you thought of objects instead of classes.
Other than that, I would not replace class with object here, because it leaves out the important feature that all objects from one class have the same methods. With object, one could interpret that each object has its own set of functions.
The process in which the newly created class uses elements of a more general class of already existing is inheritance, but is this also apply to the polymorphism?. I can't find in the internet an satisfying answer.
Inheritance is derived from the overall concept of polymorphism. Inheritance would be more specifically a type of Ad hoc polymorphism. The concept of an object oriented language in general is to allow features such as inheritance and abstraction. So inheritance allows the specialization of classes in say a hierarchical manner so then subclasses may inherit from a parent or more "general class", while Polymorphism allows you to use an object without knowing its exact type such as calling an inherited or virtual method and the language being able to get the correct method from many derivations or implementations of such method.
No, Polymorphism is where two or more classes that either implement the same interface or extend the same parent can be substituted for each other.
An example is how a List and a HashTable are both Collections and may be substituted for each other when the object is defined as the general type (Collection)
The benefits of using composition over inheritance are quite well known;
What are the cases in which the opposite is preferable?
Practically, I can see the advantage of forcing a base constructor, but I would like to know other people's opinion about other cases/domains.
I believe the famous recommendation of "favor composition over inheritance" was coined in the GoF Design Patterns book.
It says (p.20):
Favor object composition over class inheritance.
Ideally, you shouldn't have to create new components to achieve reuse.
You should be able to get all the functionality you need just by
assembling existing components through object composition. But this is
rarely the case, because the set of available components is never
quite rich enough in practice. Reuse by inheritance makes it easier to
make new components that can be composed with old ones. Inheritance
and object composition thus work together.
Nevertheless, our experience is that designers overuse inheritance as
a reuse technique, and designs are often made more reusable (and
simpler) by depending more on object composition. You'll see object
composition applied again and again in the design patterns.
Notice that this statement refers to class inheritance, and must be distinguished from interface inheritance which is fine.
Dynamism
Both are ways to achieve reusability, but the advantage of composition over inheritance is dynamism. Since the composition can be changed dynamically at runtime this represents a great advantage, whereas inheritance is statically defined at compile time.
Encapsulation
Also, composition is based on using the public interfaces of the composed objects, therefore objects respect each other's public interfaces and therefore this fosters encapsulation. On the other hand, inheritance breaks encapsulation since child components typically consume a protected interface from the parent. It is a well known problem that changes in the parent class can break the child classes, the famous base class problem. Also in inheritance parent classes define the physical representation of subclasses, therefore child clases depend on parent classes to evolve.
Cohesion
Another advantage of composition is that it keeps classes focused on one task and this foster cohesion as well.
Liabilities
Evidently a problem with composition is that you will have more objects and fewer classes. That makes a little more difficult to visualize your design and how it achieves its goals. When debugging code it is harder to know what is going on unless you know what exact instance of a given composite is currently being used by an object. So composition makes designs a bit harder to understand in my opinion.
Since the advantages of composition are multiple that's why it is suggested to favor it over inheritance, but that does not mean inheritance is always bad. You can achieve a great deal when inheritance is properly used.
Interesting References
I would suggest a study of GoF Design Patterns to see good examples of both types of reusability, for instance a Strategy Pattern that uses composition vs a Template Method that uses inheritance.
Most of the patterns make a great use of interface inheritance and then object composition to achieve their goals and only a few use class inheritance as a reusability mechanism.
If you want to delve more the book Holub on Patterns, on chapter 2 has a section called Why extends is Evil that delve much more on the liabilities of class inheritance.
The book mentions three specific aspects
Losing Flexibility: The first problem is that explicit use of a concrete-class name locks you into a specific implementation, making
down-the-line changes unnecessarily difficult.
Coupling: A more important problem with implementation inheritance is coupling, the undesirable reliance of one part of a
program on another part. Global variables are the classic example of
why strong coupling is bad. If you change the type of a global
variable, for example, all the code that uses that variable—that is
coupled to the variable—can be affected, so all this code must be
examined, modified, and retested. Moreover, all the methods that use
the variable are coupled to each other through the variable. That is,
one method may incorrectly affect the behavior of another method
simply by changing the variable’s value at an awkward time. This
problem is particularly hideous in multithreaded programs.
Fragile-Base-Class Problem: In an implementation-inheritance system (one that uses extends), the derived classes are tightly
coupled to the base classes, and this close connection is undesirable.
Designers have applied the moniker “the fragile-base-class problem” to
describe this behavior. Base classes are considered “fragile” because
you can modify a base class in a seemingly safe way, but this new
behavior, when inherited by the derived classes, may cause the derived
classes to malfunction.
The only advantage of inheritance over composition that I can think of is that it can potentially save you from a lot of boiler plate method delegation.
If you truly have an is-a relationship and you simply want all the methods from a base class in your subclass, then inheritance gives you all those methods for free.
It's a complete debatable or argumentation question and broad as well.
AFAIK, when we talk about containership (or) something containing another thing we go for Composition; i.e, An entity contains another entity; which also gives a HAS A relationship. Example: EntityA has a EntityB.
See Decorator design pattern, which is based on the concept of Composition.
But when we talk about Inheritance we talk about IS A relationship. i.e, EntityA Is A EntityB (or) EntityA Is type of a EntityB
One special case when I find inheritance the best solution is when I use a runtime-generated class that need additional methods. For example (in C#):
public abstract class Rule{
/* properties here */
public Authorization Authorization { get; set; }
public abstract bool IsValid(dynamic request, User currentUser);
}
The generated template:
public class Generated_1Rule : Rule{
public override bool IsValid(dynamic request, User currentUser){
// the user script is here
}
}
Example of user script:
return Authorization.IsAuthorized("Module_ID_001", currentUser);
The benefit is that you can add functionality to the generated script “compiled-ly”, and it’s less breaking than inheriting from interface / composition since it is compiled.
I'm trying to understand whether the answer to the following question is the same in all major OOP languages; and if not, then how do those languages differ.
Suppose I have class A that defines methods act and jump; method act calls method jump. A's subclass B overrides method jump (i.e., the appropriate syntax is used to ensure that whenever jump is called, the implementation in class B is used).
I have object b of class B. I want it to behave exactly as if it was of class A. In other words, I want the jump to be performed using the implementation in A. What are my options in different languages?
For example, can I achieve this with some form of downcasting? Or perhaps by creating a proxy object that knows which methods to call?
I would want to avoid creating a brand new object of class A and carefully setting up the sharing of internal state between a and b because that's obviously not future-proof, and complicated. I would also want to avoid copying the state of b into a brand new object of class A because there might be a lot of data to copy.
UPDATE
I asked this question specifically about Python, but it seems this is impossible to achieve in Python and technically it can be done... kinda..
It appears that apart from technical feasibility, there's a strong argument against doing this from a design perspective. I'm asking about that in a separate question.
The comments reiterated: Prefer composition over inheritance.
Inheritance works well when your subclasses have well defined behavioural differences from their superclass, but you'll frequently hit a point where that model gets awkward or stops making sense. At that point, you need to reconsider your design.
Composition is usually the better solution. Delegating your object's varying behaviour to a different object (or objects) may reduce or eliminate your need for subclassing.
In your case, the behavioural differences between class A and class B could be encapsulated in the Strategy pattern. You could then change the behaviour of class A (and class B, if still required) at the instance level, simply by assigning a new strategy.
The Strategy pattern may require more code in the short run, but it's clean and maintainable. Method swizzling, monkey patching, and all those cool things that allow us to poke around in our specific language implementation are fun, but the potential for unexpected side effects is high and the code tends to be difficult to maintain.
What you are asking is completely unrelated/unsupported by OOP programming.
If you subclass an object A with class B and override its methods, when a concrete instance of B is created then all the overriden/new implementation of the base methods are associated with it (either we talk about Java or C++ with virtual tables etc).
You have instantiated object B.
Why would you expect that you could/would/should be able to call the method of the superclass if you have overriden that method?
You could call it explicitely of course e.g. by calling super inside the method, but you can not do it automatically, and casting will not help you do that either.
I can't imagine why you would want to do that.
If you need to use class A then use class A.
If you need to override its functionality then use its subclass B.
Most programming languages go to some trouble to support dynamic dispatch of virtual functions (the case of calling the overridden method jump in a subclass instead of the parent class's implementation) -- to the degree that working around it or avoiding it is difficult. In general, specialization/polymorphism is a desirable feature -- arguably a goal of OOP in the first place.
Take a look at the Wikipedia article on Virtual Functions, which gives a useful overview of the support for virtual functions in many programming languages. It will give you a place to start when considering a specific language, as well as the trade-offs to weigh when looking at a language where the programmer can control how dispatch behaves (see the section on C++, for example).
So loosely, the answer to your question is, "No, the behavior is not the same in all programming languages." Furthermore, there is no language independent solution. C++ may be your best bet if you need the behavior.
You can actually do this with Python (sort of), with some awful hacks. It requires that you implement something like the wrappers we were discussing in your first Python-specific question, but as a subclass of B. You then need to implement write-proxying as well (the wrapper object shouldn't contain any of the state normally associated with the class hierarchy, it should redirect all attribute access to the underlying instance of B.
But rather than redirecting method lookup to A and then calling the method with the wrapped instance, you'd call the method passing the wrapper object as self. This is legal because the wrapper class is a subclass of B, so the wrapper instance is an instance of the classes whose methods you're calling.
This would be very strange code, requiring you to dynamically generate classes using both IS-A and HAS-A relationships at the same time. It would probably also end up fairly fragile and have bizarre results in a lot of corner cases (you generally can't write 100% perfect wrapper classes in Python exactly because this sort of strange thing is possible).
I'm completely leaving aside weather this is a good idea or not.
This article describes an approach to OOP I find interesting:
What if objects exist as
encapsulations, and the communicate
via messages? What if code re-use has
nothing to do with inheritance, but
uses composition, delegation, even
old-fashioned helper objects or any
technique the programmer deems fit?
The ontology does not go away, but it
is decoupled from the implementation.
The idea of reuse without inheritance or dependence to a class hierarchy is what I found most astounding, but how feasible is this?
Examples were given but I can't quite see how I can change my current code to adapt this approach.
So how feasible is this approach? Or is there really not a need for changing code but rather a scenario-based approach where "use only when needed or optimal"?
EDIT: oops, I forgot the link: here it is link
I'm sure you've heard of "always prefer composition over inheritance".
The basic idea of this premise is multiple objects with different functionalities are put together to create one fully-featured object. This should be preferred over inheriting functionality from disparate objects that have nothing to do with each other.
The main argument regarding this is contained in the definition of the Liskov Substitution Principle and playfully illustrated by this poster:
If you had a ToyDuck object, which object should you inherit from, from a purely inheritance standpoint? Should you inherit from Duck? No -- most likely you should inherit from Toy.
Bottomline is you should be using the correct method of abstraction -- whether inheritance or composition -- for your code.
For your current objects, consider if there are objects that ought to be removed from the inheritance tree and included merely as a property that you can call and invoke.
Inheritance is not well suited for code reuse. Inheriting for code reuse usually leads to:
Classes with inherited methods that must not be called on them (violating the Liskov substitution principle), which confuses programmers and leads to bugs.
Deep hierarchies where it takes inordinate amount of time to find the method you need when it can be declared anywhere in dozen or more classes.
Generally the inheritance tree should not get more than two or three levels deep and usually you should only inherit interfaces and abstract base classes.
There is however no point in rewriting existing code just for sake of it. However when you need to modify, try to switch to composition where possible. That will usually allow you to modify the code in smaller pieces, since there will be less coupling between the classes.
I just skimmed the text over, but it seems to say what OO design was always about: Inheritance is not meant as a code reuse tool and loose coupling is good. This has been written dozens times before, see the linked references on the article bottom. This does not mean you should skip inheritance entirely, you just have to use it conciously and only when it makes sense. The article also states this.
As for the duck typing, I find the examples and thoughts questionable. Like this one:
function good (foo) {
if ( !foo.baz || !foo.quux ) {
throw new TypeError("We need foo to have baz and quux methods.");
}
return foo.baz(foo.quux(10));
}
What’s the point in adding three new lines just to report an error that would be reported by the runtime automatically?
Inheritance is fundamental
no inheritance, no OOP.
prototyping and delegation can be used to effect inheritance (like in JavaScript), which is fine, and is functionally equivalent to inheritance
objects, messages, and composition but no inheritance is object-based, not object-oriented. VB5, not Java. Yes it can be done; plan on writing a lot of boilerplate code to expose interfaces and forward operations.
Those that insist inheritance is unnecessary, or that it is 'bad' are creating strawmen: it is easy to imagine scenarios where inheritance is used badly; this is not a reflection on the tool, but on the tool-user.