I am currently creating a feature and patterning it across a flat plane to get the maximum number of features to fit on the plane. I do this frequently enough to warrant building some sort of marcro for this if possible. The issue that I run into is I still have to manually set the spacing between the parts. I want to be able to create a feature and have it determine "best" fit spacing given an area while avoiding overlaps. I have had very little luck finding any resources describing this. Any information or links to potentially helpful resources on this would be much appreciated!
Thank you.
Before, you start the linear pattern bit:
Select the face2 of that feature2, get the outer most loop2 of edges. You can test for that using loop2.IsOuter.
Now:
if the loop has one edge: that means it's a circle and the spacing must superior to the circle's radius
if the loop has more that one edge, that you need to calculate all the distances between the vertices and assume that the largest distance is the safest spacing.
NOTA: If one of the edges is a spline, then you need a different strategy:
You would need to convert the face into a sketch and finds the coordinates of that spline to calculate the highest distances.
Example: The distance between the edges is lower than the distance between summit of the splines. If the linear pattern has the a vertical direction, then spacing has to be superior to the distance between the summit.
When I say distance, I mean the distance projected on the linear pattern direction.
Is there any available DM script that can compare two images and know the difference?
I mean the script can compare two or more images, and it can determine the similarity of two images, for example the 95% area of one image is same as another image, then the similarity of these two images is 95%.
The script can compare brightness and contrast distribution of images.
Thanks,
This question is a bit ill-defined, as "similarity" between images depends a lot on what you want.
If by "95% of the area is the same" you mean that 95% of the pixels are of identical value in images A & B, you can simply create a mask and sum() it to count the number of pixels, i.e.:
sum( abs(A-B)==0 ? 1 : 0 )
However, this will utterly fail if the images A & B are shifted with respect to each other even by a single pixel. It will also fail, if A & B are of same contrast but different absolute value.
I guess the intended question was to find similarity of two images in a fuzzy way.
For these, one way is to do crosscorrelation. DM has this function. Like this,
image xcorr= CrossCorrelate(ref,img)
From xcorr, the peak position gives x- and y- shift between the two, the peak intensity gives "similarity" of the two.
If you know there is no shift between the two, you can just do the sum and multiplication,
number similarity1=sum(img1*img2)
Another way to do similarity is calculate Euclidian distance of the two:
number similarity2=sqrt(sum((img1-img2)**2)).
"similarity2" calculates the "pure" similarity. "similarity1" is the pure similarity plus the mean intensity of img1 and img2. The difference is essentially this,
(a-b)**2=a**2+b**2-2*a*b.
The left term is "similarity2", the last term on the right is the "crosscorrelation" or "similarity1".
I think "similarity1" is called cross-correlation, "similarity2" is called correlation coefficient.
In example comparing two diffraction patterns, if you want to compute the degree of similarity, use "similarity2". If you want to compute the degree of similarity plus a certain character of the diffraction pattern, use "similarity1".
I have some Kinect data of somebody standing (reasonably) still and performing sets of punches. I am given it in the format of an x,y,z co-ordinate for each joint of which they are 20, so I have 60 data points per frame.
I'm trying to perform a classification task on the punches however I'm having some problems normalising my data. As you can see from the graph there are sections with much higher 'amplitude' than the others, my belief is that this is due to how close that person was to the kinect sensor when the readings were taken. (The graph is actually the first principal coefficient obtained by PCA for each frame, multiple sequences of the same punch are strung together in this graph)
Looking back at the data files it looks like those that are 'out' have a z co-ordinate (depth from sensor) of ~2.7 where as the others tent to hover around 3.3-3.6.
How can I perform a normalization with the depth values to make them closer to each other for each sequence? I've already tried differentiation to get the velocity, although it helps to normalise the output actually ends up too similar and makes it very hard to classify.
Edit: I should mention I am already using a normalization method by subtracting the hip position from each joint in an attempt to make the co-ordinates relative.
The Kinect can output some strange values when the person that is tracked is standing near the edges of the view of the Kinect. I would either completly ignore these data or just replace the data with an average of the previous 2 and next 2.
For example:
1,2,1,12,1,2,3
Replace 12 with (2 + 1 + 1 + 2) / 4 = 1.5
You can basically do this with the whole array of values you have, this way you have a more normalised line/graph.
You can also use the clippedEdges value to determine if one or more joints is outside the view.
I've got a GPS track produced by gpxlogger(1) (supplied as a client for gpsd). GPS receiver updates its coordinates every 1 second, gpxlogger's logic is very simple, it writes down location (lat, lon, ele) and a timestamp (time) received from GPS every n seconds (n = 3 in my case).
After writing down a several hours worth of track, gpxlogger saves several megabyte long GPX file that includes several thousands of points. Afterwards, I try to plot this track on a map and use it with OpenLayers. It works, but several thousands of points make using the map a sloppy and slow experience.
I understand that having several thousands of points of suboptimal. There are myriads of points that can be deleted without losing almost anything: when there are several points making up roughly the straight line and we're moving with the same constant speed between them, we can just leave the first and the last point and throw away anything else.
I thought of using gpsbabel for such track simplification / optimization job, but, alas, it's simplification filter works only with routes, i.e. analyzing only geometrical shape of path, without timestamps (i.e. not checking that the speed was roughly constant).
Is there some ready-made utility / library / algorithm available to optimize tracks? Or may be I'm missing some clever option with gpsbabel?
Yes, as mentioned before, the Douglas-Peucker algorithm is a straightforward way to simplify 2D connected paths. But as you have pointed out, you will need to extend it to the 3D case to properly simplify a GPS track with an inherent time dimension associated with every point. I have done so for a web application of my own using a PHP implementation of Douglas-Peucker.
It's easy to extend the algorithm to the 3D case with a little understanding of how the algorithm works. Say you have input path consisting of 26 points labeled A to Z. The simplest version of this path has two points, A and Z, so we start there. Imagine a line segment between A and Z. Now scan through all remaining points B through Y to find the point furthest away from the line segment AZ. Say that point furthest away is J. Then, you scan the points between B and I to find the furthest point from line segment AJ and scan points K through Y to find the point furthest from segment JZ, and so on, until the remaining points all lie within some desired distance threshold.
This will require some simple vector operations. Logically, it's the same process in 3D as in 2D. If you find a Douglas-Peucker algorithm implemented in your language, it might have some 2D vector math implemented, and you'll need to extend those to use 3 dimensions.
You can find a 3D C++ implementation here: 3D Douglas-Peucker in C++
Your x and y coordinates will probably be in degrees of latitude/longitude, and the z (time) coordinate might be in seconds since the unix epoch. You can resolve this discrepancy by deciding on an appropriate spatial-temporal relationship; let's say you want to view one day of activity over a map area of 1 square mile. Imagining this relationship as a cube of 1 mile by 1 mile by 1 day, you must prescale the time variable. Conversion from degrees to surface distance is non-trivial, but for this case we simplify and say one degree is 60 miles; then one mile is .0167 degrees. One day is 86400 seconds; then to make the units equivalent, our prescale factor for your timestamp is .0167/86400, or about 1/5,000,000.
If, say, you want to view the GPS activity within the same 1 square mile map area over 2 days instead, time resolution becomes half as important, so scale it down twice further, to 1/10,000,000. Have fun.
Have a look at Ramer-Douglas-Peucker algorithm for smoothening complex polygons, also Douglas-Peucker line simplification algorithm can help you reduce your points.
OpenSource GeoKarambola java library (no Android dependencies but can be used in Android) that includes a GpxPathManipulator class that does both route & track simplification/reduction (3D/elevation aware).
If the points have timestamp information that will not be discarded.
https://sourceforge.net/projects/geokarambola/
This is the algorith in action, interactively
https://lh3.googleusercontent.com/-hvHFyZfcY58/Vsye7nVrmiI/AAAAAAAAHdg/2-NFVfofbd4ShZcvtyCDpi2vXoYkZVFlQ/w360-h640-no/movie360x640_05_82_05.gif
This algorithm is based on reducing the number of points by eliminating those that have the greatest XTD (cross track distance) error until a tolerated error is satisfied or the maximum number of points is reached (both parameters of the function), wichever comes first.
An alternative algorithm, for on-the-run stream like track simplification (I call it "streamplification") is:
you keep a small buffer of the points the GPS sensor gives you, each time a GPS point is added to the buffer (elevation included) you calculate the max XTD (cross track distance) of all the points in the buffer to the line segment that unites the first point with the (newly added) last point of the buffer. If the point with the greatest XTD violates your max tolerated XTD error (25m has given me great results) then you cut the buffer at that point, register it as a selected point to be appended to the streamplified track, trim the trailing part of the buffer up to that cut point, and keep going. At the end of the track the last point of the buffer is also added/flushed to the solution.
This algorithm is lightweight enough that it runs on an AndroidWear smartwatch and gives optimal output regardless of if you move slow or fast, or stand idle at the same place for a long time. The ONLY thing that maters is the SHAPE of your track. You can go for many minutes/kilometers and, as long as you are moving in a straight line (a corridor within +/- tolerated XTD error deviations) the streamplify algorithm will only output 2 points: those of the exit form last curve and entry on next curve.
I ran in to a similar issue. The rate at which the gps unit takes points is much larger that needed. Many of the points are not geographically far away from each other. The approach that I took is to calculate the distance between the points using the haversine formula. If the distance was not larger than my threshold (0.1 miles in my case) I threw away the point. This quickly gets the number of points down to a manageable size.
I don't know what language you are looking for. Here is a C# project that I was working on. At the bottom you will find the haversine code.
http://blog.bobcravens.com/2010/09/gps-using-the-netduino/
Hope this gets you going.
Bob
This is probably NP-hard. Suppose you have points A, B, C, D, E.
Let's try a simple deterministic algorithm. Suppose you calculate the distance from point B to line A-C and it's smaller than your threshold (1 meter). So you delete B. Then you try the same for C to line A-D, but it's bigger and D for C-E, which is also bigger.
But it turns out that the optimal solution is A, B, E, because point C and D are close to the line B-E, yet on opposite sides.
If you delete 1 point, you cannot be sure that it should be a point that you should keep, unless you try every single possible solution (which can be n^n in size, so on n=80 that's more than the minimum number of atoms in the known universe).
Next step: try a brute force or branch and bound algorithm. Doesn't scale, doesn't work for real-world size. You can safely skip this step :)
Next step: First do a determinstic algorithm and improve upon that with a metaheuristic algorithm (tabu search, simulated annealing, genetic algorithms). In java there are a couple of open source implementations, such as Drools Planner.
All in all, you 'll probably have a workable solution (although not optimal) with the first simple deterministic algorithm, because you only have 1 constraint.
A far cousin of this problem is probably the Traveling Salesman Problem variant in which the salesman cannot visit all cities but has to select a few.
You want to throw away uninteresting points. So you need a function that computes how interesting a point is, then you can compute how interesting all the points are and throw away the N least interesting points, where you choose N to slim the data set sufficiently. It sounds like your definition of interesting corresponds to high acceleration (deviation from straight-line motion), which is easy to compute.
Try this, it's free and opensource online Service:
https://opengeo.tech/maps/gpx-simplify-optimizer/
I guess you need to keep points where you change direction. If you split your track into the set of intervals of constant direction, you can leave only boundary points of these intervals.
And, as Raedwald pointed out, you'll want to leave points where your acceleration is not zero.
Not sure how well this will work, but how about taking your list of points, working out the distance between them and therefore the total distance of the route and then deciding on a resolution distance and then just linear interpolating the position based on each step of x meters. ie for each fix you have a "distance from start" measure and you just interpolate where n*x is for your entire route. (you could decide how many points you want and divide the total distance by this to get your resolution distance). On top of this you could add a windowing function taking maybe the current point +/- z points and applying a weighting like exp(-k* dist^2/accuracy^2) to get the weighted average of a set of points where dist is the distance from the raw interpolated point and accuracy is the supposed accuracy of the gps position.
One really simple method is to repeatedly remove the point that creates the largest angle (in the range of 0° to 180° where 180° means it's on a straight line between its neighbors) between its neighbors until you have few enough points. That will start off removing all points that are perfectly in line with their neighbors and will go from there.
You can do that in Ο(n log(n)) by making a list of each index and its angle, sorting that list in descending order of angle, keeping how many you need from the front of the list, sorting that shorter list in descending order of index, and removing the indexes from the list of points.
def simplify_points(points, how_many_points_to_remove)
angle_map = Array.new
(2..points.length - 1).each { |next_index|
removal_list.add([next_index - 1, angle_between(points[next_index - 2], points[next_index - 1], points[next_index])])
}
removal_list = removal_list.sort_by { |index, angle| angle }.reverse
removal_list = removal_list.first(how_many_points_to_remove)
removal_list = removal_list.sort_by { |index, angle| index }.reverse
removal_list.each { |index| points.delete_at(index) }
return points
end
I'm trying to figure out how to calculate a min/max lat/long bound on the specific given range of a gps coordinate.
for example: gps coord 37.42935699924869,-122.16962099075317 range .2 miles
I'm looking at the point + range + bearing in the http://www.movable-type.co.uk/scripts/latlong.html site but im not sure if this is exactly what i want.
This gives 4 unique lat/long pairs and I want/need a max/min lat and a max/min long.
Calculate the distance between the (constant) central point and the point you want to test. (This page should give you the distance (in meters)).
If (distance < 0.2) then ...
Well, given a point and a distance, you will get a circle.
You're looking for two points, which will essentially describe a square (two opposite corners). The two points you're looking for won't even be on the circle. I'm not exactly sure why you want this, but I don't think there is an answer to your question.
Perhaps you could tell us what you're trying to accomplish.
EDIT: Added image to illustrate. The orange line is the distance from the centre (e.g. 0.2 miles)
alt text http://img155.imageshack.us/img155/1315/diagramp.png
After your clarification, here is a less elegant answer that might give you what you want. Well, you want the inverse of a really complicated function. I'm afraid my math skills aren't up to the task, but it should be doable.
A less elegant solution is to find it by trial and error. Essentially, keep longitude the same and vary latitude. Using the right algorithm, you should be able to find one that is very close to the distance you want. This will give you a point on the circle (one of four that is also on the square).
Then keep latitude the same and vary longitude. This will give you a second point on the square (on the middle of one of the sides), from there you can find the 4 corners of the square.
This will slow, depending on how often you have to do it, that might or might not matter.