When is it okay to switch statements in an OO language supporting polymorphism? [duplicate] - oop

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 9 years ago.
I recently learned that switch statements are bad in OOP, perticularly from "Clean Code"(p37-39) by Robert Martin.
But consider this scene: I'm writing a game server, receiving messages from clients, which contain an integer that indicates player's action, such as move, attack, pick item... etc, there will be more than 30 different actions. When I'm writing code to handle these messages, no metter what solutions I think about, it will have to use switch somewhere. What pattern should I use if not switch statement?

A switch is like any other control structure. There are places where it's the best/cleanest solution, and many more places where it's completely inappropriate. It's just abused way more than other control structures.
In OO design, it's generally considered preferable in a situation like yours to use different message types/classes that inherit from a common message class, then use overloaded methods to "automatically" differentiate between the different types.
In a case like yours, you could use an enumeration that maps to your action codes, then attach an attribute to each enumerated value that will let you use generics or type-building to build different Action sub-class objects so that the overloading method will work.
But that's a real pain.
Evaluate whether there's a design option such as the enumeration that is feasible in your solution. If not, just use the switch.

'Bad' switch statements are often those switching on object type (or something that could be an object type in another design). In other words hardcoding something that might be better handled by polymorphism. Other kinds of switch statements might well be OK
You will need a switch statement, but only one. When you receive the message, call a Factory object to return an object of the appropriate Message subclass (Move, Attack, etc), then call a message->doit() method to do the work.
That means if you add more message types, only the factory object has to change.

The Strategy pattern comes to mind.
The strategy pattern is intended to provide a means to define a family of algorithms, encapsulate each one as an object, and make them interchangeable. The strategy pattern lets the algorithms vary independently from clients that use them.
In this case, the "family of algorithms" are your different actions.
As for switch statements - in "Clean Code", Robert Martin says that he tries to limit himself to one switch statement per type. Not eliminate them altogether.
The reason is that switch statements do not adhere to OCP.

I'd put the messages in an array and then match the item to the solution key to display the message.

From the design patterns perspective you can use the Command Pattern for your given scenario. (See http://en.wikipedia.org/wiki/Command_pattern).
If you find yourself repeatedly using switch statements in the OOP paradigm, this is an indication that your classes may not be well design. Suppose you have a proper design of super and sub classes and a fair amount of Polymorphism. The logic behind switch statements should be handled by the sub classes.
For more information on how you are removed these switch statements and introduce the proper sub-classes, I recommend you read the first chapter of Refactoring by Martin Fowler. Or you can find similiar slides here http://www1.informatik.uni-wuerzburg.de/database/courses/pi2_ss03_dir/RefactoringExampleSlides.pdf. (Slide 44)

IMO switch statements are not bad, but should be avoided if possible. One solution would be to use a Map where the keys are the commands, and the values Command objects with an execute() method. Or a List if your commands are numeric and have no gaps.
However, usually, you would use switch statements when implementing design patterns; one example would be to use a Chain of responsibility pattern to handle the commands given any command "id" or "value". (The Strategy pattern was also mentionned.) However, in your case, you might also look into the Command pattern.
Basically, in OOP, you'll try to use other solutions than relying on switch blocks, which use a procedural programming paradigm. However, when and how to use either is somewhat your decision. I personally often use switch blocks when using the Factory pattern etc.
A definition of code organisation is :
a package is a group of classes with coherant API (ex: Collection API in many frameworks)
a class is a set of coherent functionalities (ex: a Math class...
a method is a functionality; it should do one thing and one thing only. (ex: adding an item in a list may require to enlarge that said list, in which case the add method will rely on other methods to do that and will not perform that operation itself, because it's not it's contract.)
Therefore, if your switch statement perform different kinds of operations, you are "violating" that definition; whereas using a design pattern does not as each operation is defined in it's own class (it's own set of functionalities).

I don't buy it. These OOP zealots seem to have machines that have infinite RAM and amazing performance. Obviously with inifinite RAM you don't have to worry about RAM fragmentation and the performance impacts that has when you continuously create and destroy small helper classes. To paraphrase a quote for the 'Beautiful Code' book - "Every problem in Computer Science can be solved with another level of abstraction"
Use a switch if you need it. Compilers are pretty good at generating code for them.

Use commands. Wrap the action in an object and let polymorphism do the switch for you. In C++ (shared_ptr is simply a pointer, or a reference in Java terms. It allows for dynamic dispatch):
void GameServer::perform_action(shared_ptr<Action> op) {
op->execute();
}
Clients pick an action to perform, and once they do they send that action itself to the server so the server doesn't need to do any parsing:
void BlueClient::play() {
shared_ptr<Action> a;
if( should_move() ) a = new Move(this, NORTHWEST);
else if( should_attack() ) a = new Attack(this, EAST);
else a = Wait(this);
server.perform_action(a);
}

Related

Polymorphism versus switch case tradeoffs

I haven't found any clear articles on this, but I was wondering about why polymorphism is the recommended design pattern over exhaustive switch case / pattern matching. I ask this because I've gotten a lot of heat from experienced developers for not using polymorphic classes, and it's been troubling me. I've personally had a terrible time with polymorphism and a wonderful time with switch cases, the reduction in abstractions and indirection makes readability of the code so much easier in my opinion. This is in direct contrast with books like "clean code" which are typically seen as industry standards.
Note: I use TypeScript, so the following examples may not apply in other languages, but I think the principle generally applies as long as you have exhaustive pattern matching / switch cases.
List the options
If you want to know what the possible values of an action, with an enum, switch case, this is trivial. For classes this requires some reflection magic
// definitely two actions here, I could even loop over them programmatically with basic primitives
enum Action {
A = 'a',
B = 'b',
}
Following the code
Dependency injection and abstract classes mean that jump to definition will never go where you want
function doLetterThing(myEnum: Action) {
switch (myEnum) {
case Action.A:
return;
case Action.B;
return;
default:
exhaustiveCheck(myEnum);
}
}
versus
function doLetterThing(action: BaseAction) {
action.doAction();
}
If I jump to definition for BaseAction or doAction I will end up on the abstract class, which doesn't help me debug the function or the implementation. If you have a dependency injection pattern with only a single class, this means that you can "guess" by going to the main class / function and looking for how "BaseAction" is instantiated and following that type to the place and scrolling to find the implementation. This seems generally like a bad UX for a developer though.
(small note about whether dependency injection is good, traits seem to do a good enough job in cases where they are necessary (though either done prematurely as a rule rather than as a necessity seems to lead to more difficult to follow code))
Write less code
This depends, but if have to define an extra abstract class for your base type, plus override all the function types, how is that less code than single line switch cases? With good types here if you add an option to the enum, your type checker will flag all the places you need to handle this which will usually involve adding 1 line each for the case and 1+ line for implementation. Compare this with polymorphic classes which you need to define a new class, which needs the new function syntax with the correct params and the opening and closing parens. In most cases, switch cases have less code and less lines.
Colocation
Everything for a type is in one place which is nice, but generally whenever I implement a function like this is I look for a similarly implemented function. With a switch case, it's extremely adjacent, with a derived class I would need to find and locate in another file or directory.
If I implemented a feature change such as trimming spaces off the ends of a string for one type, I would need to open all the class files to make sure if they implement something similar that it is implemented correctly in all of them. And if I forget, I might have different behaviour for different types without knowing. With a switch the co location makes this extremely obvious (though not foolproof)
Conclusion
Am I missing something? It doesn't make sense that we have these clear design principles that I basically can only find affirmative articles about but don't see any clear benefits, and serious downsides compared to some basic pattern matching style development
Consider the solid-principles, in particular OCP and DI.
To extend a switch case or enum and add new functionality in the future, you must modify the existing code. Modifying legacy code is risky and expensive. Risky because you may inadvertently introduce regression. Expensive because you have to learn (or re-learn) implementation details, and then re-test the legacy code (which presumably was working before you modified it).
Dependency on concrete implementations creates tight coupling and inhibits modularity. This makes code rigid and fragile, because a change in one place affects many dependents.
In addition, consider scalability. An abstraction supports any number of implementations, many of which are potentially unknown at the time the abstraction is created. A developer needn't understand or care about additional implementations. How many cases can a developer juggle in one switch, 10? 100?
Note this does not mean polymorphism (or OOP) is suitable for every class or application. For example, there are counterpoints in, Should every class implement an interface? When considering extensibility and scalability, there is an assumption that a code base will grow over time. If you're working with a few thousand lines of code, "enterprise-level" standards are going to feel very heavy. Likewise, coupling a few classes together when you only have a few classes won't be very noticeable.
Benefits of good design are realized years down the road when code is able to evolve in new directions.
I think you are missing the point. The main purpose of having a clean code is not to make your life easier while implementing the current feature, rather it makes your life easier in future when you are extending or maintaining the code.
In your example, you may feel implementing your two actions using switch case. But what happens if you need to add more actions in future? Using the abstract class, you can easily create a new action type and the caller doesn't need to be modified. But if you keep using switch case it will be lot more messier, especially for complex cases.
Also, following a better design pattern (DI in this case) will make the code easier to test. When you consider only easy cases, you may not find the usefulness of using proper design patterns. But if you think broader aspect, it really pays off.
"Base class" is against the Clean Code. There should not be a "Base class", not just for bad naming, also for composition over inheritance rule. So from now on, I will assume it is an interface in which other classes implement it, not extend (which is important for my example). First of all, I would like to see your concerns:
Answer for Concerns
This depends, but if have to define an extra abstract class for your
base type, plus override all the function types, how is that less code
than single line switch cases
I think "write less code" should not be character count. Then Ruby or GoLang or even Python beats the Java, obviously does not it? So I would not count the lines, parenthesis etc. instead code that you should test/maintain.
Everything for a type is in one place which is nice, but generally
whenever I implement a function like this is I look for a similarly
implemented function.
If "look for a similarly" means, having implementation together makes copy some parts from the similar function then we also have some clue here for refactoring. Having Implementation class differently has its own reason; their implementation is completely different. They may follow some pattern, lets see from Communication perspective; If we have Letter and Phone implementations, we should not need to look their implementation to implement one of them. So your assumption is wrong here, if you look to their code to implement new feature then your interface does not guide you for the new feature. Let's be more specific;
interface Communication {
sendMessage()
}
Letter implements Communication {
sendMessage() {
// get receiver
// get sender
// set message
// send message
}
}
Now we need Phone, so if we go to Letter implementation to get and idea to how to implement Phone then our interface does not enough for us to guide our implementation. Technically Phone and Letter is different to send a message. Then we need a Design pattern here, maybe Template Pattern? Let's see;
interface Communication {
default sendMessage() {
getMessageFactory().sendMessage(getSender(), getReceiver(), getBody())
}
getSender()
getReceiver()
getBody()
}
Letter implements Communication {
getSender() { returns sender }
getReceiver() {returns receiver }
getBody() {returns body}
getMessageFactory {returns LetterMessageFactory}
}
Now when we need to implement Phone we don't need to look the details of other implementations. We exactly now what we need to return and also our Communication interface's default method handles how to send the message.
If I implemented a feature change such as trimming spaces off the ends
of a string for one type, I would need to open all the class files to
make sure if they implement something similar that it is implemented
correctly in all of them...
So if there is a "feature change" it should be only its implemented class, not in all classes. You should not change all of the implementations. Or if it is same implementation in all of them, then why each implements it differently? It should be kept as the default method in their interface. Then if feature change required, only default method is changed and you should update your implementation and test in one place.
These are the main points that I wanted to answer your concerns. But I think the main point is you don't get the benefit. I was also struggling before I work on a big project that other teams need to extend my features. I will divide benefits to topics with extreme examples which may be more helpful to understand:
Easy to read
Normally when you see a function, you should not feel to go its implementation to understand what is happening there. It should be self-explanatory. Based on this fact; action.doAction(); -> or lets say communication.sendMessage() if they implement Communicate interface. I don't need to go for its base class, search for implementations etc. for debugging. Even implementing class is "Letter" or "Phone" I know that they send message, I don't need their implementation details. So I don't want to see all implemented classes like in your example "switch Letter; Phone.." etc. In your example doLetterThing responsible for one thing (doAction), since all of them do same thing, then why you are showing your developer all these cases?. They are just making the code harder to read.
Easy to extend
Imagine that you are extending a big project where you don't have an access to their source(I want to give extreme example to show its benefit easier). In the java world, I can say you are implementing SPI (Service Provider Interface). I can show you 2 example for this, https://github.com/apereo/cas and https://github.com/keycloak/keycloak where you can see that interface and implementations are separated and you just implement new behavior when it is required, no need to touch the original source. Why this is important? Imagine the following scenario again;
Let's suppose that Keycloak calls communication.sendMessage(). They don't know implementations in build time. If you extend Keycloak in this case, you can have your own class that implements Communication interface, let's say "Computer". Know if you have your SPI in the classpath, Keycloak reads it and calls your computer.sendMessage(). We did not touch the source code but extended the capabilities of Message Handler class. We can't achieve this if we coded against switch cases without touching the source.

How to restructure/redesign an ever growing adapter class? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
I am working on a game/simulation application that uses multiple mathematical solvers. There is an already existing adapter class for each of them. These adapter classes provide all rendering and functional information for the application.
Broadly speaking, we keep an adapter object to represent an instance and call methods to achieve:
Generate rendering data.
modify object state. There are just too many function to do it.
read data model information for various purposes.
Now the problem is that these classes keep growing over a period of time and carry too much information and responsibility.
My question is how can I redesign/restructure these classes to make better sense. Is there any design pattern I should be looking at?
Edit: As requested, here is the broad list of things any adapter class will be doing.
Sync with the current data stored in mathematical solver.
Sync with the data model of our application. For things like
undo/redo.
Modify object state: Change in shape. This is most important and have
various, more than 50, functions to achieve it. All are self
contained single service call with parameters. I am trying to insert
interfaces and factory here but function signatures are not
compatible.
Get data model information of mathematical solver. Like getChildern
etc.
Change visibility and other graphic property.
The principle to use would be Information Expert from GRASP:
[…] Using the principle of Information Expert, a general approach to assigning responsibilities is to look at a given responsibility, determine the information needed to fulfill it, and then determine where that information is stored. Information Expert will lead to placing the responsibility on the class with the most information required to fulfill it. […]
Though never explicitly mentioned, applying this principle will likely lead you to using the patterns given by Martin Fowler in the chapter Moving Features Between Objects in his Refactoring book:
[…] Often classes become bloated with too many responsibilities. In this case I use Extract Class to separate some of these responsibilities. If a class becomes too irresponsible, I use Inline Class to merge it into another class. If another class is being used, it often is helpful to hide this fact with Hide Delegate. Sometimes hiding the delegate class results in constantly changing the owner’s interface, in which case you need to use Remove Middle Man […]
In general, break down your classes so that each only has one reason to change, per the Single Responsibility Principle. Leave your "adapters" in place as a Facade over the classes you'll extract; it will make the refactor smoother.
Since you describe a list of responsibilities that are common to all your adapters, you probably have a lot of code that is almost the same between the adapters. As you go through this exercise, try extracting the same responsibility from several adapters, and watch for ways to eliminate duplication.
It would be tempting to start with extracting a class for "Modify Object state". Since you have more than 50 (!) functions fulfilling that responsibility, you should probably break that down into several classes, if you can. As this is likely the biggest cause of bloat in your adapter class, just doing it may solve the problem, though it will be important to break it down or you'll just move the God class, instead of simplifying it.
However, this will be a lot of work and it will likely be complex enough that you won't easily see opportunities for reuse of the extracted classes between adapters. On the other hand, extracting small responsbilities won't get you a lot of benefit. I would pick something in the middle to start.

Bad practice to use 5 different method parameters? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
I have two buttons that each can perform two different implementations (whether selected or not), so that's 4 possible implementations in total. After coding it all out, I noticed I had 20+ lines of code for each implementation and only 1 or 2 variables were different in each. I decided I want to clean this up and have each implementation call separate, smaller methods and pass the inconsistent variables as parameters.
I figure this is a better practice b/c I'm reusing code. However, in one of my methods I have to pass 5 different arguments implement the method with correct conditions.
Is having this many parameters in a method a bad practice?
Having many parameters is not necessary a bad thing.
There are patterns that create a class to group all the parameters into one object that may seem cleaner to you. Another alternative is to use a dictionary for with all the parameters as the single configuration parameter. Some of Apples classes does this (for example title font configuration in the navigation bar).
I personally would say that code repetition is worse than many methods calling each other and having multiple parameters.
If it allow you to remove many duplicate lines, I don't see any problem to do it this way.
If it's to remove 1 or 2 lines then it might not worth the effort.
In fact you can pass as many arguments as needed. There might be other ways to do what you what to achieve but without the code your 5 arguments seems valid at first glance.
There is no specific number of parameters that is generally "bad practice". A method should have as many parameters as it needs. That said, there are cases where having a large number of parameters may indicate that a better design might be possible. For example, there are cases where you may realize an object should be tracking some value in a member variable instead of having the value passed into its methods every time.
I think it's okay to use 5 params because some objective-c default method are also having 4 params like
[[NSNotificationCenter defaultCenter] addObserver:self
selector:#selector(updateConvMenu:)
notificationName:#"NSConvertersChanged"
object:converterArray];
What we can do to make it more clear is giving a better format to your code
disclaimer: I know zilch about objective c
It is difficult to say without seeing the code in question, and it completely depends on what you are doing. To say that having a method with five parameters is bad practice right off the bat is a bit presumptive, although it is certainly good practice to keep the number of method parameters as small as possible.
The fact that this method sounds like an internal 'helper' method (and not a publicly exposed component of an API) gives you more lee-way then you might otherwise have, but typically you do not want to be in a situation where a method is doing different things based on some arcane combination of parameters.
When I run into methods with uncomfortably long signatures that cannot be restructured without creating redundant code, I typically do one of the following:
wrap the offensive method with several more concise methods. You might create, as an example, a method for each of your 'implementations', with a good name indicating its purpose that accepts only the arguments needed for that purpose. It would then delegate to the internal, smellier method. The smelly method would only ever be used in your 'implementation specific' wrappers instead of being scattered throughout your code. Using the well named wrappers in its stead, developers will understand your intent without having to decipher the meaning of the parameters.
Create a Class that encapsulates the data needed by the method. If what the method does depends on the state of some system or subsystem, then encapsulate that state! I do this often with 'XXContext' type classes. Now your method can inspect and analyze this contextual data and take the appropriate actions. This is good for refactoring as well. If the method in the future needs more information to accomplish its tasks or implement new functionality, you can add this data to the argument object, instead of having to change every bit of code that uses the method. Only code that needs to make use of the changes will have to supply the the appropriate values to the contextual data.
This is one of those subjective questions that's really hard to answer definitively.
I don't mind a number of parameters in an Objective C method as it can make the API that's being called more clear (and the parameters can be nice & type safe, too).
If you can distill those many functions down to a smaller number of functions (or a "base" function which is called from all the other functions), that's probably also makes for cleaner code that's easier to follow and read. Plus if you make an update to that "base" function, the functionality change will be picked up by all the ways you call your action (that's can also be a good or bad thing, of course).

Switch statements are bad? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 9 years ago.
I recently learned that switch statements are bad in OOP, perticularly from "Clean Code"(p37-39) by Robert Martin.
But consider this scene: I'm writing a game server, receiving messages from clients, which contain an integer that indicates player's action, such as move, attack, pick item... etc, there will be more than 30 different actions. When I'm writing code to handle these messages, no metter what solutions I think about, it will have to use switch somewhere. What pattern should I use if not switch statement?
A switch is like any other control structure. There are places where it's the best/cleanest solution, and many more places where it's completely inappropriate. It's just abused way more than other control structures.
In OO design, it's generally considered preferable in a situation like yours to use different message types/classes that inherit from a common message class, then use overloaded methods to "automatically" differentiate between the different types.
In a case like yours, you could use an enumeration that maps to your action codes, then attach an attribute to each enumerated value that will let you use generics or type-building to build different Action sub-class objects so that the overloading method will work.
But that's a real pain.
Evaluate whether there's a design option such as the enumeration that is feasible in your solution. If not, just use the switch.
'Bad' switch statements are often those switching on object type (or something that could be an object type in another design). In other words hardcoding something that might be better handled by polymorphism. Other kinds of switch statements might well be OK
You will need a switch statement, but only one. When you receive the message, call a Factory object to return an object of the appropriate Message subclass (Move, Attack, etc), then call a message->doit() method to do the work.
That means if you add more message types, only the factory object has to change.
The Strategy pattern comes to mind.
The strategy pattern is intended to provide a means to define a family of algorithms, encapsulate each one as an object, and make them interchangeable. The strategy pattern lets the algorithms vary independently from clients that use them.
In this case, the "family of algorithms" are your different actions.
As for switch statements - in "Clean Code", Robert Martin says that he tries to limit himself to one switch statement per type. Not eliminate them altogether.
The reason is that switch statements do not adhere to OCP.
I'd put the messages in an array and then match the item to the solution key to display the message.
From the design patterns perspective you can use the Command Pattern for your given scenario. (See http://en.wikipedia.org/wiki/Command_pattern).
If you find yourself repeatedly using switch statements in the OOP paradigm, this is an indication that your classes may not be well design. Suppose you have a proper design of super and sub classes and a fair amount of Polymorphism. The logic behind switch statements should be handled by the sub classes.
For more information on how you are removed these switch statements and introduce the proper sub-classes, I recommend you read the first chapter of Refactoring by Martin Fowler. Or you can find similiar slides here http://www1.informatik.uni-wuerzburg.de/database/courses/pi2_ss03_dir/RefactoringExampleSlides.pdf. (Slide 44)
IMO switch statements are not bad, but should be avoided if possible. One solution would be to use a Map where the keys are the commands, and the values Command objects with an execute() method. Or a List if your commands are numeric and have no gaps.
However, usually, you would use switch statements when implementing design patterns; one example would be to use a Chain of responsibility pattern to handle the commands given any command "id" or "value". (The Strategy pattern was also mentionned.) However, in your case, you might also look into the Command pattern.
Basically, in OOP, you'll try to use other solutions than relying on switch blocks, which use a procedural programming paradigm. However, when and how to use either is somewhat your decision. I personally often use switch blocks when using the Factory pattern etc.
A definition of code organisation is :
a package is a group of classes with coherant API (ex: Collection API in many frameworks)
a class is a set of coherent functionalities (ex: a Math class...
a method is a functionality; it should do one thing and one thing only. (ex: adding an item in a list may require to enlarge that said list, in which case the add method will rely on other methods to do that and will not perform that operation itself, because it's not it's contract.)
Therefore, if your switch statement perform different kinds of operations, you are "violating" that definition; whereas using a design pattern does not as each operation is defined in it's own class (it's own set of functionalities).
I don't buy it. These OOP zealots seem to have machines that have infinite RAM and amazing performance. Obviously with inifinite RAM you don't have to worry about RAM fragmentation and the performance impacts that has when you continuously create and destroy small helper classes. To paraphrase a quote for the 'Beautiful Code' book - "Every problem in Computer Science can be solved with another level of abstraction"
Use a switch if you need it. Compilers are pretty good at generating code for them.
Use commands. Wrap the action in an object and let polymorphism do the switch for you. In C++ (shared_ptr is simply a pointer, or a reference in Java terms. It allows for dynamic dispatch):
void GameServer::perform_action(shared_ptr<Action> op) {
op->execute();
}
Clients pick an action to perform, and once they do they send that action itself to the server so the server doesn't need to do any parsing:
void BlueClient::play() {
shared_ptr<Action> a;
if( should_move() ) a = new Move(this, NORTHWEST);
else if( should_attack() ) a = new Attack(this, EAST);
else a = Wait(this);
server.perform_action(a);
}

What features do you wish were in common languages? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
What features do you wish were in common languages? More precisely, I mean features which generally don't exist at all but would be nice to see, rather than, "I wish dynamic typing was popular."
I've often thought that "observable" would make a great field modifier (like public, private, static, etc.)
GameState {
observable int CurrentScore;
}
Then, other classes could declare an observer of that property:
ScoreDisplay {
observe GameState.CurrentScore(int oldValue, int newValue) {
...do stuff...
}
}
The compiler would wrap all access to the CurrentScore property with notification code, and observers would be notified immediately upon the value's modification.
Sure you can do the same thing in most programming languages with event listeners and property change handlers, but it's a huge pain in the ass and requires a lot of piecemeal plumbing, especially if you're not the author of the class whose values you want to observe. In which case, you usually have to write a wrapper subclass, delegating all operations to the original object and sending change events from mutator methods. Why can't the compiler generate all that dumb boilerplate code?
I guess the most obvious answer is Lisp-like macros. Being able to process your code with your code is wonderfully "meta" and allows some pretty impressive features to be developed from (almost) scratch.
A close second is double or multiple-dispatch in languages like C++. I would love it if polymorphism could extend to the parameters of a virtual function.
I'd love for more languages to have a type system like Haskell. Haskell utilizes a really awesome type inference system, so you almost never have to declare types, yet it's still a strongly typed language.
I also really like the way you declare new types in Haskell. I think it's a lot nicer than, e.g., object-oriented systems. For example, to declare a binary tree in Haskell, I could do something like:
data Tree a = Node a (Tree a) (Tree a) | Nothing
So the composite data types are more like algebraic types than objects. I think it makes reasoning about the program a lot easier.
Plus, mixing in type classes is a lot nicer. A type class is just a set of classes that a type implements -- sort of like an interface in a language like Java, but more like a mixin in a language like Ruby, I guess. It's kind of cool.
Ideally, I'd like to see a language like Python, but with data types and type classes like Haskell instead of objects.
I'm a big fan of closures / anonymous functions.
my $y = "world";
my $x = sub { print #_ , $y };
&$x( 'hello' ); #helloworld
and
my $adder = sub {
my $reg = $_[0];
my $result = {};
return sub { return $reg + $_[0]; }
};
print $adder->(4)->(3);
I just wish they were more commonplace.
Things from Lisp I miss in other languages:
Multiple return values
required, keyword, optional, and rest parameters (freely mixable) for functions
functions as first class objects (becoming more common nowadays)
tail call optimization
macros that operate on the language, not on the text
consistent syntax
To start things off, I wish the standard for strings was to use a prefix if you wanted to use escape codes, rather than their use being the default. E.g. in C# you can prefix with # for a raw string. Similarly, Python has the r prefix. I'd rather use #/r when I don't want a raw string and need escape codes.
More powerful templates that are actually designed to be used for metaprogramming, rather than C++ templates that are really designed for relatively simple generics and are Turing-complete almost by accident. The D programming language has these, but it's not very mainstream yet.
immutable keyword. Yes, you can make immutable objects, but that's lot pain in most of the languages.
class JustAClass
{
private int readonly id;
private MyClass readonly obj;
public MyClass
{
get
{
return obj;
}
}
}
Apparently it seems JustAClass is an immutable class. But that's not the case. Because another object hold the same reference, can modify the obj object.
So it's better to introduce new immutable keyword. When immutable is used that object will be treated immutable.
I like some of the array manipulation capabilities found in the Ruby language. I wish we had some of that built into .Net and Java. Of course, you can always create such a library, but it would be nice not to have to do that!
Also, static indexers are awesome when you need them.
Type inference. It's slowly making it's way into the mainstream languages but it's still not good enough. F# is the gold standard here
I wish there was a self-reversing assignment operator, which rolled back when out of scope. This would be to replace:
type datafoobak = item.datafoobak
item.datafoobak = 'tootle'
item.handledata()
item.datafoobak = datafoobak
with this
item.datafoobar #=# 'tootle'
item.handledata()
One could explicitely rollback such changes, but they'd roll back once out of scope, too. This kind of feature would be a bit error prone, maybe, but it would also make for much cleaner code in some cases. Some sort of shallow clone might be a more effective way to do this:
itemclone = item.shallowclone
itemclone.datafoobak='tootle'
itemclone.handledata()
However, shallow clones might have issues if their functions modified their internal data...though so would reversible assignments.
I'd like to see single-method and single-operator interfaces:
interface Addable<T> --> HasOperator( T = T + T)
interface Splittable<T> --> HasMethod( T[] = T.Split(T) )
...or something like that...
I envision it as being a typesafe implementation of duck-typing. The interfaces wouldn't be guarantees provided by the original class author. They'd be assertions made by a consumer of a third-party API, to provide limited type-safety in cases where the original authors hadn't anticipated.
(A good example of this in practice would be the INumeric interface that people have been clamboring for in C# since the dawn of time.)
In a duck-typed language like Ruby, you can call any method you want, and you won't know until runtime whether the operation is supported, because the method might not exist.
I'd like to be able to make small guarantees about type safety, so that I can polymorphically call methods on heterogeneous objects, as long as all of those objects have the method or operator that I want to invoke.
And I should be able to verify the existence of the methods/operators I want to call at compile time. Waiting until runtime is for suckers :o)
Lisp style macros.
Multiple dispatch.
Tail call optimization.
First class continuations.
Call me silly, but I don't think every feature belongs in every language. It's the "jack of all trades, master of none" syndrome. I like having a variety of tools available, each one of which is the best it can be for a particular task.
Functional functions, like map, flatMap, foldLeft, foldRight, and so on. Type system like scala (builder-safety). Making the compilers remove high-level libraries at compile time, while still having them if you run in "interpreted" or "less-compiled" mode (speed... sometimes you need it).
There are several good answers here, but i will add some:
1 - The ability to get a string representation for the current and caller code, so that i could output a variable name and its value easily, or print the name of the current class, function or a stack trace at any time.
2 - Pipes would be nice too. This feature is common in shells, but uncommon in other types of languages.
3 - The ability to delegate any number of methods to another class easily. This looks like inheritance, but even in the presence of inheritance, once in a while we need some kind of wrapper or stub which cannot be implemented as a child class, and forwarding all methods requires a lot of boilerplate code.
I'd like a language that was much more restrictive and was designed around producing good, maintainable code without any trickiness. Also, it should be designed to give the compiler the ability to check as much as possible at compile time.
Start with a newish VM based heavily OO language.
Remove complexities like Operator Overloading and multiple inheritance if they exist.
Force all non-final variables to Private.
Members should default to "Final" but should have a "Variable" tag to override it. (This may require built-in support for the builder pattern to be fully effective).
Variables should not allow a "Null" value by default, but variables and parameters should have a "nullable" tag that indicates that null is acceptable for that variable.
It would also be nice to be able to avoid some common questionable patterns:
Some built-in way to simplify IOC/DI to eliminate singletons,
Java--eliminate checked exceptions so people stop putting in empty catches.
Finally focus on code readability:
Named Parameters
Remove the ability to create methods more than, say, 100 lines long.
Add some complexity analysis to help detect complicated methods and classes.
I'm sure I haven't named 1/10 of the items possible, but basically I'm talking about something that compiles to the same bytecode as C# or Java, but is so restrictive that a programmer can hardly help but write good code.
And yes, I know there are lint-type tools that will do some of this, but I've never seen them on any project I've worked on (and they wouldn't physically run on the code I'm working on now, for instance) so they aren't being very helpful, and I would love to see a compile actually fail when you type in a 101 line method...