Let's say I have an class to model a city. Its characteristics are the following:
It has only two properties "name" and "population", both private, that are set in the constructor.
It has getters for these properties, but not setters.
I don't want any user of this class to set the properties, I want them to use a public .edit() method.
This method needs opens up a form to input the new name of the city and population, i.e.: a view. Then, if I have a view, I would like to implement the MVC pattern, so the idea would be that the controller receives the .edit() call, renders the view, retrieves the data back, and sends it to the view so that it changes its state.
But, if I do so, I have to change the properties of the city model from private to public. So, if any user instantiates my class, she/he can directly change the properties.
So, the philosophical question: Isn't that breaking the encapsulation?
EDIT Just to make it more explicit:
This city_instance.edit() method should be the only way to mutate the object.
Besides, I see that part of my problems comes from the misunderstanding that a model is an object (you can read that on php mvc frameworks), when it is actually a different abstraction, it's a layer that groups the business logic (domain objects + I guess more things)
Disclaimer: I don't really understand where are you proposing the .edit() method to be implemented, so it would help if you could clarify that a little bit there.
The first thing to consider here is that in the bulleted list of your question you seem to imply that a City instance acts like an immutable object: it takes its instance variables in the constructor and doesn't allow anybody in the outside to change them. However, you later state that you actually want to create a way to visually edit a City instance. This two requirements are clearly going to create some tension, since they are kind of opposites.
If you go the MVC approach, by separating the view from the model you have two main choices:
Treat your City objects as immutable and, instead of editing an instance when the values are changed in the form, throw away the original object and create a new one.
Provide a way to mutate an existing City instance.
The first approach keeps your model intact if you actually consider a City as an immutable object. For the second one there are many different ways to go:
The most standard way is to provide, in the City class, a mutator. This can have the shape of independent setters for each property or a common message (I think this is the .edit() method you mentioned) to alter many properties at once by taking an array. Note that here you don't take a form object as a parameter, since models should not be aware of the views. If you want your view to take note of internal changes in the model, you use the Observer pattern.
Use "friend" classes for controllers. Some languages allow for friend classes to access an object's internals. In this case you could create a controller that is a friend class of your model that can make the connection between the model and the view without having to add mutators to your model.
Use reflection to accomplish something similar to the friend classes.
The first of this three approaches is the only language agnostic choice. Whether that breaks encapsulation or not is kind of difficult to say, since the requirements themselves would be conflicting (It would basically mean wanting to have a model separated from the view that can be altered by the user but that doesn't allow the model itself to be changed for the outside). I would however agree that separating the model from the view promotes having an explicit mutation mechanism if you want mutable instances.
HTH
NOTE: I'm referring to MVC as it applies to Web applications. MVC can apply to many kinds of apps, and it's implemented in many kinds of ways, so it's really hard to say MVC does or does not do any specific thing unless you are talking strictly about something defined by the pattern, and not a particular implementation.
I think you have a very specific view of what "encapsulation" is, and that view does not agree with the textbook definition of encapsulation, nor does it agree with the common usage of it. There is no definition of "Encapsulation" I can find that requires that there be no setters. In fact, since Setters are in and of themselves methods that be used to "edit" the object, it's kind of a silly argument.
From the Wikipedia entry (note where it says "like getter and setter"):
In general, encapsulation is one of the four fundamentals of OOP (object-oriented programming). Encapsulation is to hide the variables or something inside a class, preventing unauthorized parties to use. So the public methods like getter and setter access it and the other classes call these methods for accessing.
http://en.wikipedia.org/wiki/Encapsulation_(object-oriented_programming)
Now, that's not to say that MVC doesn't break encapsulation, I'm just saying that your idea of what Encapsulation is is very specific and not particularly canonical.
Certainly, there are a number of problems that using Getters and Setters can cause, such as returning lists that you can then change directly outside of the object itself. You have to be careful (if you care) to keep your data hidden. You can also replace a collection with another collection, which is probably not what you intend.
The Law of Demeter is more relevant here than anything else.
But all of this is really just a red herring anyways. MVC is only about the GUI, and the GUI should be as simple as possible. It should have almost no logic in either the view or the controller. You should be using simple view models to deserialize your form data into a simple structure, which can the be used to apply to any business architecture you like (if you don't want setters, then create your business layer with objects that don't use setters and use mutattors.).
There is little need for complex architecture in the UI layer. The UI layer is more of a boundary and gateway that translates the flat form and command nature of HTTP to whatever business object model you choose. As such, it's not going to be purely OO at the UI level, because HTTP isn't.
This is called an Impedance Mismatch, which is often associated with ORM's, because Object models do not map easily to relational models. The same is true of HTTP to Business objects. You can think of MVC as a corollary to an ORM in that respect.
Related
In oop we seek to encapsulation. We try not to expose internal state via getters or by public fields, only expose methods.
So far so good.
In situation when we would like to operate on multiple Entities we introduce Service.
But how this service can operate freely on these entities?
If all (both Service and Entities) were in the same package, Entities could expose package private methods or fields and Service could use them, preserving encapsulation. But what when Entities and Service are from different packages? It seems that Entities should either expose public getters (first step to anemic model and leackage of logic from Entities), or public methods executing logic that is specific to the needs of service, possibly introduced only by requirements of this service - also seems bad. How to tackle this?
In the context of OO, the most important thing for you to understand is that objects respond to messages, and that in OOP in particular, methods are how these responses are implemented.
For example, imagine you have a Person object to which you (as the programmer) have assigned the responsibility to respond to the "grow" message. Generally, you would implement that as a Person.grow() method, like this.
class Person {
int age;
public void grow() { this.age++; }
}
This seems fairly obvious, but you must note that from the message sender's perspective, how Person object reacts is meaningless. For all it cares, the method Person.grow() could be triggering a missile launch, and it would not matter because some other object (or objects) could be responding in the right way (for example, a UI component updating itself on the screen). However, you decided that when the Person object handles the "grow" message, it must increment the value of its age attribute. This is encapsulation.
So, to address your concern, "public methods executing logic that is specific to the needs of service, possibly introduced only by requirements of this service - also seems bad", it is not bad at all because you are designing the entities to respond to messages from the services in specific ways to match the requirements of your application. The important thing to bear in mind is that the services do not dictate how the entities behave, but rather the entities respond in their own way to requests from the services.
Finally, you might be asking yourself: how do entities know that they need to respond to certain messages? This is easy to answer: YOU decide how to link messages to responses. In other words, you think about the requirements of your application (what "messages" will be sent by various objects) and how they will be satisfied (how and which objects will respond to messages).
In situation when we would like to operate on multiple Entities we introduce Service.
No we don't. Well, I guess some people do, but the point is they shouldn't.
In object-orientation, we model a particular problem domain. We don't (again, shouldn't) discriminate based on what amount of other objects a single object operates. If I have to model an Appointment and a collection of Appointment I don't introduce an AppointmentService, I introduce a Schedule or Timetable, or whatever is appropriate for the domain.
The distinction of Entity and Service is not domain-conform. It is purely technical and most often a regression into procedural thinking, where an Entity is data and the Service is a procedure to act on it.
DDD as is practiced today is not based on OOP, it just uses object syntax. One clear indication is that in most projects entities are directly persisted, even contain database ids or database-related annotations.
So either do OOP or do DDD, you can't really do both. Here is a talk of mine (talk is german but slides are in english) about OO and DDD.
I don't see the usage of getters as a step towards an anaemic model. Or at least, as everything in programming, it depends.
Downside of anaemic model is that every component accessing the object can mutate it without any enforcing of its invariants (opening to possible inconsistency in data), it can be done easily using the setter methods.
(I will use the terms command and query to indicate methods that modify the state of the objects and methods that just return data without changing anything)
The point of having an aggregate/entity is to enforce the object invariants, so it exposes "command" methods that don't reflect the internal structure of the object, but instead are "domain oriented" (using the "ubiquitous language" for their naming), exposing its "domain behavior" (an avoidance of get/set naming is suggested because they are standard naming for representing the object internal structure).
This is for what concern the set methods, what about get?
As set methods can be seen as "command" of the aggregate, you can see the getters as "query" methods used to ask data to the aggregate. Asking data to an aggregate is totally fine, if this doesn't break the responsability of the aggregate of enforcing invariants. This means that you should watch out to what the query method returns.
If the query method result is a value object, so, immutable, it is totally fine to have it. In this way who query the aggregate has in return something that can be only read.
So you could have query methods doing calculation using the object internal state (eg. A method int missingStudents() that calculate the number of missing student for a Lesson entity that has the totalNumber of students and a List<StudentId> in its internal state), or simple methods like List<StudentId> presentStudent() that just returns the list in its internal state, but what change from a List<StudentId> getStudents() its just the name).
So if the get method return something that is immutable who use it can't break the invariants of the aggregate.
If the method returns a mutable object that is part of the aggregate state, whoever access the object can query for that object and now can mutate something that stays inside the aggregate without passing for the right command methods, skipping invariants check (unless it is something wanted and managed).
Other possibility is that the object is created on the fly during the query and is not part of the aggregate state, so if someone access it, also if it is mutable, the aggregate is safe.
In the end, get and set methods are seen as an ugly thing if you are a ddd extremist, but sometimes they can also be useful being a standard naming convention and some libraries work on this naming convention, so I don't see them bad, if they don't break the aggregate/entity responsibilities.
As last thing, when you say In situation when we would like to operate on multiple Entities we introduce Service., this is true, but also a service should operate (mutate, save) on a single aggregate, but this is another topic đ.
I have a data class which encapsulates relevant data items in it. Those data items are set and get by users one by one when needed.
My confusion about the design has to do with which object should be responsible for handling the update of multiple properties of that data object. Sometimes an update operation will be performed which affects many properties at once.
So, which class should have the update() method?. Is it the data class itself or another manager class ? The update() method requires data exchange with many different objects, so I don't want to make it a member of the data class because I believe it should know nothing about the other objects required for update. I want the data class to be only a data-structure. Am I thinking wrong? What would be the right approach?
My code:
class RefData
{
Matrix mX;
Vector mV;
int mA;
bool mB;
getX();
setB();
update(); // which affects almost any member attributes in the class, but requires many relations with many different classes, which makes this class dependant on them.
}
or,
class RefDataUpdater
{
update(RefData*); // something like this ?
}
There is this really great section in the book Clean Code, by Robert C. Martin, that speaks directly to this issue.
And the answer is it depends. It depends on what you are trying to accomplish in your design--and
if you might have more than one data-object that exhibit similar behaviors.
First, your data class could be considered a Data Transfer Object (DTO). As such, its ideal form is simply a class without any public methods--only public properties -- basically a data structure. It will not encapsulate any behavior, it simply groups together related data. Since other objects manipulate these data objects, if you were to add a property to the data object, you'd need to change all the other objects that have functions that now need to access that new property. However, on the flip side, if you added a new function to a manager class, you need to make zero changes to the data object class.
So, I think often you want to think about how many data objects might have an update function that relates directly to the properties of that class. If you have 5 classes that contain 3-4 properties but all have an update function, then I'd lean toward having the update function be part of the "data-class" (which is more of an OO-design). But, if you have one data-class in which it is likely to have properties added to it in the future, then I'd lean toward the DTO design (object as a data structure)--which is more procedural (requiring other functions to manipulate it) but still can be part of an otherwise Object Oriented architecture.
All this being said, as Robert Martin points out in the book:
There are ways around this that are well known to experienced
object-oriented designers: VISITOR, or dual-dispatch, for example.
But these techniques carry costs of their own and generally return the
structure to that of a procedural program.
Now, in the code you show, you have properties with types of Vector, and Matrix, which are probably more complex types than a simple DTO would contain, so you may want to think about what those represent and whether they could be moved to separate classes--with different functions to manipulate--as you typically would not expose a Matrix or a Vector directly as a property, but encapsulate them.
As already written, it depends, but I'd probably go with an external support class that handles the update.
For once, I'd like to know why you'd use such a method? I believe it's safe to assume that the class doesn't only call setter methods for a list of parameters it receives, but I'll consider this case as well
1) the trivial updater method
In this case I mean something like this:
public update(a, b, c)
{
setA(a);
setB(b);
setC(c);
}
In this case I'd probably not use such a method at all, I'd either define a macro for it or I'd call the setter themselves. But if it must be a method, then I'd place it inside the data class.
2) the complex updater method
The method in this case doesn't only contain calls to setters, but it also contains logic. If the logic is some sort of simple property update logic I'd try to put that logic inside the setters (that's what they are for in the first place), but if the logic involves multiple properties I'd put this logic inside an external supporting class (or a business logic class if any appropriate already there) since it's not a great idea having logic reside inside data classes.
Developing clear code that can be easily understood is very important and it's my belief that by putting logic of any kind (except for say setter logic) inside data classes won't help you achieving that.
Edit
I just though I'd add something else. Where to put such methods also depend upon your class and what purpose it fulfills. If we're talking for instance about Business/Domain Object classes, and we're not using an Anemic Domain Model these classes are allowed (and should contain) behavior/logic.
On the other hand, if this data class is say an Entity (persistence objects) which is not used in the Domain Model as well (complex Domain Model) I would strongly advice against placing logic inside them. The same goes for data classes which "feel" like pure data objects (more like structs), don't pollute them, keep the logic outside.
I guess like everywhere in software, there's no silver bullet and the right answer is: it depends (upon the classes, what this update method is doing, what's the architecture behind the application and other application specific considerations).
Iâm fairly new to OO. If I have two classes A and B that need to exchange data, or call each otherâs methods, I need to be able to access an instance of class B from class A. Should I maintain the address of the instance object in a global variable? Should I appoint a (singleton) master class, and make (pointers to) instances of A and B properties of the master class? (AppDelegate comes to mind.)
Is there a straightforward by-the-book way to implement this? Somehow Iâm missing some "best practice" here. Iâve looked through Apple's examples, but didn't find an answer.
EDIT: Since I'm fairly new to MVC design patterns, my question is essentially "Who creates who"?
We're talking about an Audio Player here. 1. When the user selects a song, the UI displays its waveform by creating a viewController which creates the appropriate view. 2. When the user hits play, the UI displays a timeline while the song is playing by overlaying a new view over the waveform. Now, the latter view needs some info from the waveform display viewController. Right now, I'm storing a pointer to the viewController in an instance variable of my appDelegate. This works, but feels extremely strange.
Should I outsource the info that is needed by both classes to some third entity that every class can access easily?
Classes aren't simply departments of code. They are templates for the creation of objects, which you should think of as actors in your program, doing things within their areas of responsibility (which you defineâyou decide what each object does) and interacting with each other.
While you can handle a class as you would an object, classes generally do not talk to each other. Most of the time, you will create and use instances of the classesâwhich is what we normally mean by âobjectsââand have those talking to each other. One object sends another a message, telling the receiver to do something or changing one of the receiver's properties. These messages are the interactions between your program's objects.
Those weird expressions in the square brackets are message expressions. Nearly everything you'll do with a class or object will involve one or more messages. You can send messages to classes the same as to objects, and classes can send messages just as objects can.
In Cocoa and Cocoa Touch, you typically have model objects, view objects, controller objects, data objects (such as NSString, NS/UIImage, and NSURL), and helper objects (such as NSFileManager). The classes you'll write for your application will mainly be model, view, and controller objects (MVC). The model represents (models) what the user will see themselves manipulating; the view displays the model to the user; the controller implements logic and makes sure the model gets saved to and loaded from persistent storage.
For more information, see Object-Oriented Programming in Objective-C and the Cocoa Fundamentals Guide.
Since I'm fairly new to MVC design patterns, my question is essentially "Who creates who"?
Controllers create and load the model, and load the views, and pass the model to the view for display. Certain controllers may also create other controllers.
It's good to keep a straightforward tree-like graph of ownership from a single root of your programâtypically the application objectâdown through controllers to leaf objects in the models and views. If two objects own each other, that's a problem. If an object is not owned by anything outside of its own class (a singleton), that's usually a problem as wellâa sign you need to think some more about where that code belongs. (Helper objects are the main exception; most of those are singletons. Again, see NSFileManager for an example. But they are few and far between.)
Further situation analysis require more information. At first place you should more specify the relation between classes and what exactly do you mean by exchanging data.
Singletons should be generally avoided. If you want to exchange information it is usually sufficient to provide for example instance of the class A to the instance of the class B by some method or constructor. The instance of B is then capable of calling public methods (and accessing public properties) of the instance of A.
A little bit of "best practices" can be learn by searching up "Design Patterns".
You should decide if one class can be an object of another class (encapsulation), or if one class can inherit from the other class (inheritance). If neither of these is an option, then maybe you could make one class (or some of its members) static?
Thanks for your contributions. Additionally, I found information on this page very useful. It lays out MCV considerations for cocoa in a hands-on way and practical language.
I recently read that getters/setters are evil and I have to say it makes sense, yet when I started learning OOP one of the first things I learned was "Encapsulate your fields" so I learned to create class give it some fields, create getters, setters for them and create constructor where I initialize these fields. And every time some other class needs to manipulate this object (or for instance display it) I pass it the object and it manipulate it using getters/setters. I can see problems with this approach.
But how to do it right? For instance displaying/rendering object that is "data" class - let's say Person, that has name and date of birth. Should the class have method for displaying the object where some Renderer would be passed as an argument? Wouldn't that violate principle that class should have only one purpose (in this case store state) so it should not care about presentation of this object.
Can you suggest some good resources where best practices in OOP design are presented? I'm planning to start a project in my spare time and I want it to be my learning project in correct OOP design..
Allen Holub made a big splash with "Why getter and setter methods are evil" back in 2003.
It's great that you've found and read the article. I admire anybody who's learning and thinking critically about what they're doing.
But take Mr. Holub with a grain of salt.
This is one view that got a lot of attention for its extreme position and the use of the word "evil", but it hasn't set the world on fire or been generally accepted as dogma.
Look at C#: they actually added syntactic sugar to the language to make get/set operations easier to write. Either this confirms someone's view of Microsoft as an evil empire or contradicts Mr. Holub's statement.
The fact is that people write objects so that clients can manipulate state. It doesn't mean that every object written that way is wrong, evil, or unworkable.
The extreme view is not practical.
"Encapsulate your fields" so I learned to create class give it some fields, create getters, setters
Python folks do not do this. Yet, they are still doing OO programming. Clearly, fussy getters and setters aren't essential.
They're common, because of limitations in C++ and Java. But they don't seem to be essential.
Python folks use properties sometimes to create a getter and setter functions that look like a simple attribute.
The point is that "Encapsulation" is a Design strategy. It has little or nothing to do with the implementation. You can have all public attributes, and still a nicely encapsulated design.
Also note that many people worry about "someone else" who "violates" the design by directly accessing attributes. I suppose this could happen, but then the class would stop working correctly.
In C++ (and Java) where you cannot see the source, it can be hard to understand the interface, so you need lots of hints. private methods, explicit getters and setters, etc.
In Python, where you can see all the source, it's trivial to understand the interface. We don't need to provide so many hints. As we say "Use the source, Luke" and "We're all adults here." We're all able to see the source, we don't need to be fussy about piling on getters and setters to provide yet more hints as to how the API works.
For instance displaying/rendering object that is "data" class - let's say Person, that has name and date of birth. Should the class have method for displaying the object where some Renderer would be passed as an argument?
Good idea.
Wouldn't that violate principle that class should have only one purpose (in this case store state) so it should not care about presentation of this object.
That's why the Render object is separate. Your design is quite nice.
No reason why a Person object can't call a general-purpose renderer and still have a narrow set of responsibilities. After all the Person object is responsible for the attributes, and passing those attributes to a Renderer is well within it's responsibilities.
If it's truly a problem (and it can be in some applications), you can introduce Helper classes. So the PersonRenderer class does Rendering of Person data. That way a change to Person also requires changes to PersonRenderer -- and nothing else. This is the Data Access Object design pattern.
Some folks will make the Render an internal class, contained within Person, so it's Person.PersonRenderer to enforce some more serious containment.
If you have getters and setters, you don't have encapsulation. And they are not necessary. Consider the std::string class. This has quite a complicated internal representation, yet has no getters or setters, and only one element of the representation is (probably) exposed simply by returning its value (i.e. size()). That's the kind of thing you should be aiming for.
The basic concept of why they are considered to be evil is, that a class/object should export function and not state. The state of an object is made of its members. Getters and Setters let external users read/modify the state of an object without using any function.
Hence the idea, that except for DataTransferObjects for which you might have Getters and a constructor for setting the state, the members of an objects should only be modified by calling a functionality of an object.
Why do you think getters are evil? See a post with answers proving the opposite:
Purpose of private members in a class
IMHO it contains a lot of what can rightfully be called "OOP best practices".
Update: OK, reading the article you are referring to, I understand more clearly what the issue is. And it's a whole different story from what the provocative title of the article suggests. I haven't yet read the full article, but AFAIU the basic point is that one should not unnecessarily publish class fields via mindlessly added (or generated) getters and setters. And with this point I fully agree.
By designing carefully and focusing on what you must do rather than how
you'll do it, you eliminate the vast majority of getter/setter methods in
your program. Don't ask for the information you need to do the work;
ask the object that has the information to do the work for you.
So far so good. However, I don't agree that providing a getter like this
int getSomeField();
inherently compromises your class design. Well it does, if you haven't designed your class interface well. Then, of course, it might happen that you realize too late that the field should be a long rather than an int, and changing it would break 1000 places in client code. IMHO in such case the designer is to blame, not the poor getter.
In some languages, like C++, there's the concept of friend. Using this concept you can make implementation details of a class visible to only a subset of other classes (or even functions). When you use Get/Set indiscriminately you give everyone access to everything.
When used sparingly friend is an excellent way of increasing encapsulation.
Assume you have many entity classes in your designs, and suppose they have a base class like Data. Adding different getter and setter methods for concrete implementations will pollute the client code that uses these entities like lots of dynamic_casts, to call required getter and setter methods.
Therefore, getter and setter methods may remain where they are, but you should protected client code. My recommendation would be to apply Visitor pattern or data collector for these cases.
In other words, ask yourself why do I need these accessor methods, how do I manipulate these entities? And then apply these manipulations in Visitor classes to keep client code clean, also extend the functionality of entity classes without polluting their code.
In the following paper concerning endotesting you'll find a pattern to avoid getters (in some circumstances) using what the author calls 'smart handlers'. It has a lot in common with how Holub approaches avoiding some getters.
http://www.mockobjects.com/files/endotesting.pdf
Anything that is public is part of the API of the class. Changing these parts may break other stuff, relying on that. A public field, that is not only connected with an API, but with internal representation, can be risky. Example: You save data in a field as an array. This array is public, so the data can be changed from other classes. Later you decide to switch to a generic List. Code that use this field as an array is broken.
For example, I have window (non-document model) - it has a controller associated with it. Within this window, I have a list and an add button. Clicking the add button brings up another "detail" window / dialog (with an associated controller) that allows the user to enter the detail information, click ok, and then have the item propagated back to the original window's list. Obviously, I would have an underlying model object that holds a collection of these entities (let's call the singular entity an Entity for reference).
Conceivably, I have just one main window, so I would likely have only one collection of entities. I could stash it in the main window's controller â but then how do I pass it to the detail window? I mean, I probably don't want to be passing this collection around - difficult to read / maintain / multithread. I could pass a reference to the parent controller and use it to access the collection, but that seems to smell as well. I could stash it in the appDelegate and then access it as a "global" variable via [[NSApplication sharedApplication] delegate] - that seems a little excessive, considering an app delegate doesn't really have anything to do with the model. Another global variable style could be an option - I could make the Entity class have a singleton factory for the collection and class methods to access the collection. This seems like a bigger abuse than the appDelegate - especially considering the Entity object and the collection of said entities are two separate concerns. I could create an EntityCollection class that has a singleton factory method and then object methods for interaction with the collection (or split into a true factory class and collection class for a little bit more OO goodness and easy replacement for test objects). If I was using the NSDocument model, I guess I could stash it there, but that's not much different than stashing it in the application delegate (although the NSDocument itself does seemingly represent the model in some fashion).
I've spent quite a bit of time lately on the server side, so I haven't had to deal with the client-side much, and when I have, I just brute forced a solution. In the end, there are a billion ways to skin this cat, and it just seems like none of them are terribly clean or pretty. What is the generally accepted Cocoa programmer's way of doing this? Or, better yet, what is the optimum way to do this?
I think your conceptual problem is that you're thinking of the interface as the core of the application and the data model as something you have to find a place to cram somewhere.
This is backwards. The data model is the core of the program and everything else is grafted onto the data model. The model should encapsulate all the logical operations that can be performed on the data. An interface, GUI or otherwise, merely sends messages to the data model requesting certain actions.
Starting with this concept, it's easy to see that having the data model universally accessible is not sloppy design. Since the model contains all the logic for altering the data, you can have an arbitrarily large number of interfaces accessing it without the data becoming muddled or code complicated because the model changes the data only according to its own internal rules.
The best way to accomplish universal access is to create a singleton producing class and then put the header for the class in the application prefix headers. That way, any object in the app can access the data model.
Edit01:
Let me clarify the important difference between a naked global variable and a globally accessible class encapsulated data model.
Historically, we viewed global variables as bad design because they were just raw variables. Any part of the code could alter them at will. This nakedness led to obvious problems has you had to continuously guard against some stray fragment of code altering the global and then bringing the app down.
However, in a class based global, the global variable is encapsulated and protected by the logic implemented by the encapsulating class. This encapsulation means that while any stray fragment of code may attempt to alter the global variable inside the class, it can only do so if the encapsulating class permits the alteration. The automatic validation reduces the complexity of the code because all the validation logic resides in one single class instead of being spread out all over the app in any random place that data might be manipulated.
Instead of creating a weak point as in the case of a naked global variable, you create strong and universal validation and management of the data. If you find a problem with the data management, you only have to fix it in one place. Once you have a properly configured data model, the rest of the app becomes ridiculously easy to write.
My initial reaction would be to use a "modal delegate," a lot like NSAlerts do. You'd create your detail window by passing a reference to a delegate, which the detail window would message when it is done creating the object. The delegateâwhich would probably be the controller for the main windowâcould then handle the "done editing" message and add the object to the collection. I'd tend to not want to pass the collection around directly.
I support the EntityCollection class. If you have a list of objects, that list should be managed outside a specific controller, in my opinion.
I use the singleton method where the class itself manages it's own collections, setup and teardown. I find this separates the database/storage functionality from the controllers and keeps things clean. It's nice and easy to just call [Object objects] and have it return a reference to my list of objects.