Understanding COM Objects - com

I'm trying to understand COM concept. As per my understanding: COM is a binary interface or executed function library (in machine language) which could be extended or re-used by any programming languages with the help of its functions and property exposed by the vendor.
SO in case of below code could we say Fso or Txtobj object created is a COM or ActiveX object?
And if we want to create the same file system or Text stream object in other programming languages like Java, what should we do? Since we say COM as language independent.
Set Fso = CreateObject("Scripting.FileSystemObject")
Set Txtobj = Fso.CreateTextFile("C:\Users\ACER\Desktop\Project Folder\NewText_5.txt")

If I understand correctly what your questions are:
Something is a COM object based on how it is built to expose its functionality to other code that uses it. It must be built to follow certain rules and it has to provide certain functionality that is mandatory, and it must do so in a very specific way at the binary level (bits and bytes). Unfortunately, the specific rules are lengthy and too complex to explain in this answer.
There are also rules and specific binary requirements that must be obeyed by the code that uses the object.
The language independence comes from the fact that the rules are so precise and that they are designed so they are not tied to any specific language. Many languages can be used to write COM objects, and many languages can use COM objects. By which I mean that those language need to provide a mechanism for the programmer to obey those rules. That is key: the rules don't specific how the language should make it possible to obey the rules. Each language has different ways; some languages will automatically take care of a lot of details for you while others require you to do most of the work by hand. some use a special syntax just for COM, while others use the same syntax they use for everything else.
Note that "language independence" (I would call it more appropriately "language neutrality") is not the same as "language universality". Not every language can use COM.
With that in mind, your answers are:
1) How do you know if something is a COM object from reading a line of code such as those in your example?
The true answer is: "it depends on how the object was written. If it's written to obey the rules of COM and it's called via COM mechanisms in your language, then it is a COM object". In the specific case of looking at code and trying to decide if it's COM without looking at the details of the object, the answer is: "It depends on the language."
In your example code in VBScript, both are COM objects. The fact that the expression uses the Set command tells you immediately that the variables will refer to a COM object. Remember, the answer will be different in other languages (for example, even in VB6 the presence of set is not enough to know if the object is a COM object).
2) How is the language independence achieved?
It is achieved by the use of strict rules at the binary level. Different languages comply with the rules different ways and that is OK. Some languages cannot comply with those rules, and they so not support COM.
Those specific objects you show have their own functionality and yes, they work through functions and properties; those are some of the rules. If a language doesn't have a mechanism that allows you to call those functions, then that language cannot be used to use COM objects.
If you want to learn the rules, they are usually expressed in C or C++, and one of the best books on the subject is "Essential COM" by Don Box.

Related

Why is adding methods to a type different than adding a sub or an operator in perl6?

Making subs/procedures available for reuse is one core function of modules, and I would argue that it is the fundamental way how a language can be composable and therefore efficient with programmer time:
if you create a type in your module, I can create my own module that adds a sub that operates on your type. I do not have to extend your module to do that.
# your module
class Foo {
has $.id;
has $.name;
}
# my module
sub foo-str(Foo:D $f) is export {
return "[{$f.id}-{$f.name}]"
}
# someone else using yours and mine together for profit
my $f = Foo.new(:id(1234), :name("brclge"));
say foo-str($f);
As seen in Overloading operators for a class this composability of modules works equally well for operators, which to me makes sense since operators are just some kinda syntactic sugar for subs anyway (in my head at least). Note that the definition of such an operator does not cause any surprising change of behavior of existing code, you need to import it into your code explicitly to get access to it, just like the sub above.
Given this, I find it very odd that we do not have a similar mechanism for methods, see e.g. the discussion at How do you add a method to an existing class in Perl 6?, especially since perl6 is such a method-happy language. If I want to extend the usage of an existing type, I would want to do that in the same style as the original module was written in. If there is a .is-prime on Int, it must be possible for me to add a .is-semi-prime as well, right?
I read the discussion at the link above, but don't quite buy the "action at a distance" argument: how is that different from me exporting another multi sub from a module? for example the rust way of making this a lexical change (Trait + impl ... for) seems quite hygienic to me, and would be very much in line with the operator approach above.
More interesting (to me at least) than the technicalities is the question if language design: isn't the ability to provide new verbs (subs, operators, methods) for existing nouns (types) a core design goal for a language like perl6? If it is, why would it treat methods differently? And if it does treat them differently for a good reason, does that not mean we are using way to many non-composable methods as nouns where we should be using subs instead?
From a language design perspective, it all comes down to a simple question: which language are we speaking? In Perl 6, this is a question about which we always try to be very clear.
The notion of ones current language in Perl 6 is defined entirely in terms of lexical scope. Sub declarations are lexically scoped. When we import symbols from a module, including extra multi candidates, those are lexically scoped. When we perform language tweaks - such as introducing new operators - those are lexically scoped. Verbs in our current language - that is, subroutine calls - are those with a lexical definition. (Operators are simply sub calls with more interesting parsing.) Since lexical scopes are closed at the end of compile time, the compiler has a complete view of the current language. That's why sub calls to non-existent subs, or references to undeclared variables, are detected and reported at compile time, as well as some basic compile-time type checking; future Perl 6 versions are likely to extend the set of compile-time checks that can be expected. The current language is the static, early-bound, part of Perl 6.
By contrast, a method call is a verb to be interpreted in the target object's language. This is the dynamic, late-bound, part of Perl 6. While the most immediate result of that is the typical polymorphism found in various forms in implementations of OO, thanks to meta-programming even the manner in which a verb is interpreted is up for grabs. For example, a monitor will acquire a lock while it interprets the verb and release it afterwards. Other objects might have been constructed based on things other than Perl 6 code, and so the interpretation of a verb doesn't mean invoking code written as a Perl 6 method. Or the code might be somewhere over the network. Who knows? Well, certainly not the caller, and that's the point, and the power, and the risk, of late binding.
The Perl 6 answer to "I want to extend the range of verbs I can use with this object in my current language" is very simple: use language features that relate to extending the current language! There's even a special syntax, $obj.&foo, that allows for a verb foo to be defined in the current language - by writing a sub - and then invoked much as if it's a method on the object. However, the small syntactic distinction makes it clear to the reader - and to the compiler - what is going on, and which language is getting to define that verb.
Through the use of augment it is possible to extend the language defined by some type of objects. However, it's rarely the best way to do things, given that it will have global effect, and also scatter the definition of the language of the object.
Much of what we do in programming is about building languages. By that I don't mean new syntax; most of our new languages - even in a language as open to mutation as Perl 6 - are just nouns and verbs defined using standard language features. However, in any non-trivial program, we can't keep every detail of every language in mind at once. When I go to the restaurant and order a schnitzel, I don't know how the order will be transported to the kitchen, what the kitchen looks like, whether the schnitzel is hammered out, breaded, and cooked on demand, or just served from a (hopefully not too stale) cache of prepared schnitzels. The kitchen and I have just enough shared meaning to make the right kind of thing happen, but I don't know how they'll precisely react to my request and they need not know what I'll do in the meantime. This kind of thinking is acknowledged by OO itself - at least when we fully embrace it - and at a larger scale by concepts such as bounded contexts, as found in Domain Driven Design.
In summary, Perl 6 tries to help us keep our languages straight: to know what is in our current language, and what we express with only limited understanding. That distinction is encoded by the sub/method distinction, which also turns out to be a sensible place to hang a static/dynamic distinction too.

Why does TypeName() return different results from .GetType and TypeOf when working with COM?

I feel like I would benefit greatly from understanding the differences in how these functions work so that I could better understand when to use each one.
I'm having a very difficult time working with two different interops (Excel, and EPDM) which have both made extensive use of weak typed parameters. I keep running into problems using returned objects and casting them to the proper type (per the documentation). After wasting a ton of time, I've found that using TypeName, GetType, and a TypeOf operator with COM objects can yield different results, and in different circumstances each one can be more or less reliable than the next.
Now, in most cases TypeName() seems to be the most reliable for determining type with COM objects. However, avoiding the other two functions entirely seems quite cargo cultish to me, and besides that today I ran into an interesting problem where I can't seem to cast an object to the type reported by TypeName(). An interesting notion was brought up in the comments on that problem that objects which implement IDispatch may actually return the dispatched interface typename, which could partially explain the differences.
I'd really like to better understand how these functions actually work, but I get kind of lost running through the .NET ReferenceSource, so I'm offering a bounty on this question in hopes someone can explain how these different functions work and in what context each should be used.
Here is a code excerpt from working with the Excel interop.
Dim DocProps As Object
DocProps = WeeklyReports.CustomDocumentProperties 'WeeklyReports is a Workbook object
Debug.Print(DocProps Is Nothing)
Debug.Print(TypeName(DocProps))
Debug.Print(TypeOf (DocProps) Is DocumentProperties)
Debug.Print(DocProps.GetType.ToString)
The output is:
False
DocumentProperties
False
System.__ComObject
It is a long story and a bit doubtful that English is going to cut it. It does require understanding how COM works and how it was integrated into the Office products.
At breakneck speed, COM is very heavily an interface-based programming paradigm at its core. Interfaces are easy, classes are hard. Something you see back in the .NET design as well, a class can derive from only one single base class but can implement any number of interfaces. To make language interop work smoothly, it is important to take as few dependencies on language implementation details as possible.
There is a lot that COM does not do that you'd be used to in any modern language. It does not support exceptions, only error codes. No notion of generics at all. No Reflection. No support for method overloads. No support for implementation inheritance whatsoever, the notion of a class is completely hidden. It only appears as a number, the CLSID, a guid that identifies a class type. With a factory function implemented in the COM component that creates an object of the class. The COM component retains ownership of that object. The client code then only ever uses interfaces to make calls to use methods and get or set properties. CoCreateInstance() is the primary runtime support function that does this.
This was further whittled down to a subset called OLE Automation, the flavor that you use when you interop with Office. It strictly limits the kind of types you can use for properties and method arguments with prescribed ways to deal with the difficult ones like strings and arrays. It does add some capabilities, it supports late binding through the IDispatch interface, important to scripting languages. And VARIANTs, a data type that can store a value or object reference of an arbitrary type. And supports type libraries, a machine-readable description of the interfaces implemented by the COM server. .NET metadata is the exact analogue.
And important to this question, it limit the number of interfaces that a class can implement to just one. Important to languages that don't support the notion of interfaces at all, like VBA, scripting languages like Javascript and VBScript and early Visual Basic versions. The Office interop object model was very much designed with these limitations in mind.
So from the point of view from a programmer that uses such a language to automate an Office program, it is completely invisible that his language runtime is actually using interfaces. All he ever sees and uses in his program are identifiers that look like class names, not interface names. That DocumentProperties is actually an interface name is something you can see in Object Browser. Just type the name in the search box, it properly annotates "public interface DocumentProperties / Member of Microsoft.Office.Core" in the lower-right panel.
One specific detail of the Office object model matters a great deal here, many properties and method return types are VARIANTs. A OLE Automation type that can store an arbitrary value or object reference, it is mapped to System.Object when you use .NET. The Workbook.CustomDocumentProperties property is like that. Even though the property is documented to actually return a DocumentProperties interface reference. They probably did this to leave elbow room to some day return another kind of interface. Fairly necessary for "custom document properties".
That the property is a VARIANT doesn't matter that much in languages that support dynamic typing, they take them with stride. It is however pretty painful in a strongly typed language. And pretty unfriendly to programming editors that support auto-completion, like VS's IntelliSense. What you normally do is declare your variable to the expected interface type:
Dim DocProps As DocumentProperties
DocProps = CType(WeeklyReports.CustomDocumentProperties, Microsoft.Office.Core.DocumentProperties)
And now everything lights up. You don't need the CType() cast either if you favor programming VB.NET with Option Strict Off in effect. Which turns it into a programming language that supports dynamic typing well.
We're getting there. As long as you declare DocProps as Object then the compiler knows beans about the interface. Nor does the debugger, it isn't helped by the variable declaration and can only see that it is a __System.ComObject from the runtime type. So it isn't Nothing, that's easy enough to understand, the property getter did not fail and the document has properties.
The TypeName() function uses a feature of the IDispatch interface, it exposes type information at runtime. That happens to work in your case, it usually doesn't, the function first calls IDispatch::GetTypeInfo() to get an ITypeInfo interface reference, then calls ITypeLib::GetDocumentation(). That works, you get the interface name back. Otherwise pretty comparable to Reflection in .NET, just not nearly as powerful. Do not rely on it heavily, there are lots of COM components that don't implement this.
And crucial to your question, TypeOf (DocProps) Is DocumentProperties is a fail whale. Something you'll discover when you try to write the code I proposed earlier. You'll get a nasty runtime exception, System.InvalidCastException:
{"Unable to cast COM object of type 'System.__ComObject' to interface type 'Microsoft.Office.Core.DocumentProperties'. This operation failed because the QueryInterface call on the COM component for the interface with IID '{2DF8D04D-5BFA-101B-BDE5-00AA0044DE52}' failed due to the following error: No such interface supported (Exception from HRESULT: 0x80004002 (E_NOINTERFACE))."}
In other words, the Excel documentation is lying to you. You get an interface back that resembles DocumentProperties, it still has the members that this interface documents, but is no longer identical to the Microsoft.Office.Core.DocumentProperties. It probably once was, many moons ago. A nasty little detail that's buried inside this KB article:
Note The DocumentProperties and the DocumentProperty interfaces are late bound interfaces. To use these interfaces, you must treat them like you would an IDispatch interface.

OOP vs procedural in run-time

I have very simple question I cant find answer anywhere on the internet.
So, my question is, in procedural programming, code is in code section, which goes into Read Only memory area. Variables are either on stack or heap.
But OOP says that object are created in memory. So, does it mean even functions are written into R/W memory area?
And, does Os have to have some inbuilt OOP programs support? For example if OS doesent allowed to read instruction outside Read only code section. Thanks.
Generally, both OOP and procedural programming are abstractions which exist only at the source-code level. Once a program is compiled into executable machine-code, these abstractions cease to exist. So whether or not a particular language is OOP or procedural has no bearing on what regions of memory it uses, or where instructions are placed during execution.
The OS itself usually doesn't know or care whether a particular executable was written in an OOP or procedural language. It only cares that the executable uses binary op-codes compatible with its native instruction set, and that the executable has an ABI (binary interface) that it understands.
This is a good question.
Whereas as object constitutes functions and data as being placed in the same spot theoretically, most implementations split it. The way you do it, is that code is split out and stored into the RO segment. An object in the RW area then have a way to refer back to that code in the RO area. The coupling of code and data is only used conceptually by the human programmer and the type checker to ensure that you do not violate the rules and principles.
A Java/C#-like language will usually be made such that each object has a tag identifying the type of the object. The object itself is simply a struct containing all the fields laid out in a prespecified order. This tag can then be used to look up which function in the RO-area to call. The function in the RO-area is altered to take an extra parameter, called this or self through which the contents of said object can be reached. When the method needs to refer to fields, it knows the pre-specified order, so it can do that correclty. Note that there are some tricks needed to solve inheritance, but this is the crux of the idea.
A Python/Ruby-like language will usually make an object be a hash-table where a method is a pointer to the code in the RO-area (provided that the language is compiled and not run through a bytecode interpreter). Function calls are made by looking up the hash-table contents and following the code pointer. Fields are also looked up in the same hash table.
With those basics down, most implementations make tricks to avoid the part where a pointer is followed to find the function to call. They try to figure out and narrow down the possible call to a single function. Then they can replace the lookup with a direct call to the right function, a much faster solution.
the tl;dr version: The language semantics views fields and methods as part of an object. The implementation split them into RO and RW segments. As such no OS support is needed.
OOP doesn't say this. I have no idea where you read it, if you add a quote that would help.
Objects are variables, so what you know about variables is correct for objects. In languages like C# (.net framework actually) objects can only be stored in heap, because they are so called reference types. In C++ they can live anywhere.
But OOP says that object are created in memory. So, does it mean even functions are written into R/W memory area?
From this i concluded that you think that functions are objects. That is true in far not every OOP language. It is from functional languages where functions are first class objects. Functions are in majority of cases immutable and are placed in read only sections.
Common OSes like Windows, Linux and MacOsx are unaware of objects. This is purely program concept. .net framework and java vm provide layer of abstraction. They are execution environments that have build in object support.

How is a dynamically-typed language implemented on top of a statically-typed language?

I've only recently come to really grasp the difference between static and dynamic typing, by starting off with C++, and moving into Python and JavaScript. What I don't understand is how a dynamically-typed language (e.g. Python) can be implemented on top of a statically-typed language (e.g. C). I seem to remember reading something about void pointers once, but I didn't really get it.
Every variable in the d-t language is represented as a struct { type, value }, where a value is union/another struct/pointer etc.
In C++ you can get similar ("similar") result if you, for example, create a base abstract class MyVariable and derived MyInt, MyString etc. You can, with some more work, use these vars like in dynamically typed language. (I don't know C++ very well, but I think you'll need to use friend operators functions to change a type of variables in runtime, or maybe not, whatever)
This result is archieved by the same thing, runtime type information, which strores info of actual type in the object
I won't recommend it, though :)
Basically, each "variable" of your dynamically typed language is represented by a structure in the statically typed language, which the data type being one of the fields. The operations on these dynamic data types (add, subtract, compare) are usually implemented by a virtual method table, which is for each data type a number of pointers to functions that implement the desired functionality in a type-specific way.
It's not. The dynamically typed language is implemented on top of a CPU architecture. As long as the CPU architecture is Turing complete, you can implement a static language on it, or a dynamic language, or something hybrid like the CLR/DLR of .NET. The important thing is that the Turing completeness of the CPU architecture is what enables or disables things, not the static nature of a programming language like C or C++.
In general, programming languages maintain Turing completeness, and therefore you can implement anything in any programming language. Of course some things are easier if the underlying tools support it, so it is not easy to implement an application that relies on a dynamic underpinning, in C or C++. That's why people put the effort into making a dynamic system that is programmable, like Python, so that you can implement the dynamic system once and suffer going through that extra effort only one time, then reuse it from the dynamic language layer.

Why the claim that C# people don't get object-oriented programming? (vs class-oriented)

This caught my attention last night.
On the latest ALT.NET Podcast Scott Bellware discusses how as opposed to Ruby, languages like C#, Java et al. are not truly object oriented rather opting for the phrase "class-oriented". They talk about this distinction in very vague terms without going into much detail or discussing the pros and cons much.
What is the real difference here and how much does it matter? What are other languages then are "object-oriented"? It sounded pretty interesting but I don't want to have to learn Ruby just to know what if anything I am missing.
Update
After reading some of the answers below it seems like people generally agree that the reference is to duck-typing. What I'm not sure I understand still though is the claim that this ultimately changes all that much. Especially if you are already doing proper TDD with loose coupling etc. Can someone show me an example of a specific thing I could do with Ruby that I cannot do with C# and that exemplifies this different OOP approach?
In an object-oriented language, objects are defined by defining objects rather than classes, although classes can provide some useful templates for specific, cookie-cutter definitions of a given abstraction. In a class-oriented language, like C# for example, objects must be defined by classes, and these templates are usually canned and packaged and made immutable before runtime. This arbitrary constraint that objects must be defined before runtime and that the definitions of objects are immutable is not an object-oriented concept; it's class oriented.
The duck typing comments here are more attributing to the fact that Ruby and Python are more dynamic than C#. It doesn't really have anything to do with it's OO Nature.
What (I think) Bellware meant by that is that in Ruby, everything is an object. Even a class. A class definition is an instance of an object. As such, you can add/change/remove behavior to it at runtime.
Another good example is that NULL is an object as well. In ruby, everything is LITERALLY an object. Having such deep OO in it's entire being allows for some fun meta-programming techniques such as method_missing.
IMO, it's really overly defining "object-oriented", but what they are referring to is that Ruby, unlike C#, C++, Java, et al, does not make use of defining a class -- you really only ever work directly with objects. Conversely, in C# for example, you define classes that you then must instantiate into object by way of the new keyword. The key point being you must declare a class in C# or describe it. Additionally, in Ruby, everything -- even numbers, for example -- is an object. In contrast, C# still retains the concept of an object type and a value type. This in fact, I think illustrates the point they make about C# and other similar languages -- object type and value type imply a type system, meaning you have an entire system of describing types as opposed to just working with objects.
Conceptually, I think OO design is what provides the abstraction for use to deal complexity in software systems these days. The language is a tool use to implement an OO design -- some make it more natural than others. I would still argue that from a more common and broader definition, C# and the others are still object-oriented languages.
There are three pillars of OOP
Encapsulation
Inheritance
Polymorphism
If a language can do those three things it is a OOP language.
I am pretty sure the argument of language X does OOP better than language A will go on forever.
OO is sometimes defined as message oriented. The idea is that a method call (or property access) is really a message sent to another object. How the recieveing object handles the message is completely encapsulated. Often the message corresponds to a method which is then executed, but that is just an implementation detail. You can for example create a catch-all handler which is executed regardless of the method name in the message.
Static OO like in C# does not have this kind of encapsulation. A massage has to correspond to an existing method or property, otherwise the compiler will complain. Dynamic languages like Smalltalk, Ruby or Python does however support "message-based" OO.
So in this sense C# and other statically typed OO languages are not true OO, sine thay lack "true" encapsulation.
Update: Its the new wave.. which suggest everything that we've been doing till now is passe.. Seems to be propping up quite a bit in podcasts and books.. Maybe this is what you heard.
Till now we've been concerned with static classes and not unleashed the power of object oriented development. We've been doing 'class based dev.' Classes are fixed/static templates to create objects. All objects of a class are created equal.
e.g. Just to illustrate what I've been babbling about... let me borrow a Ruby code snippet from PragProg screencast I just had the privilege of watching.
'Prototype based development' blurs the line between objects and classes.. there is no difference.
animal = Object.new # create a new instance of base Object
def animal.number_of_feet=(feet) # adding new methods to an Object instance. What?
#number_of_feet = feet
end
def animal.number_of_feet
#number_of_feet
end
cat = animal.clone #inherits 'number_of_feet' behavior from animal
cat.number_of_feet = 4
felix = cat.clone #inherits state of '4' and behavior from cat
puts felix.number_of_feet # outputs 4
The idea being its a more powerful way to inherit state and behavior than traditional class based inheritance. It gives you more flexibility and control in certain "special" scenarios (that I've yet to fathom). This allows things like Mix-ins (re using behavior without class inheritance)..
By challenging the basic primitives of how we think about problems, 'true OOP' is like 'the Matrix' in a way... You keep going WTF in a loop. Like this one.. where the base class of Container can be either an Array or a Hash based on which side of 0.5 the random number generated is.
class Container < (rand < 0.5 ? Array : Hash)
end
Ruby, javascript and the new brigade seem to be the ones pioneering this. I'm still out on this one... reading up and trying to make sense of this new phenomenon. Seems to be powerful.. too powerful.. Useful? I need my eyes opened a bit more. Interesting times.. these.
I've only listened to the first 6-7 minutes of the podcast that sparked your question. If their intent is to say that C# isn't a purely object-oriented language, that's actually correct. Everything in C# isn't an object (at least the primitives aren't, though boxing creates an object containing the same value). In Ruby, everything is an object. Daren and Ben seem to have covered all the bases in their discussion of "duck-typing", so I won't repeat it.
Whether or not this difference (everything an object versus everything not an object) is material/significant is a question I can't readily answer because I don't have sufficient depth in Ruby to compare it to C#. Those of you who on here who know Smalltalk (I don't, though I wish I did) have probably been looking at the Ruby movement with some amusement since it was the first pure OO language 30 years ago.
Maybe they are alluding to the difference between duck typing and class hierarchies?
if it walks like a duck and quacks like a duck, just pretend it's a duck and kick it.
In C#, Java etc. the compiler fusses a lot about: Are you allowed to do this operation on that object?
Object Oriented vs. Class Oriented could therefore mean: Does the language worry about objects or classes?
For instance: In Python, to implement an iterable object, you only need to supply a method __iter__() that returns an object that has a method named next(). That's all there is to it: No interface implementation (there is no such thing). No subclassing. Just talking like a duck / iterator.
EDIT: This post was upvoted while I rewrote everything. Sorry, won't ever do that again. The original content included advice to learn as many languages as possible and to nary worry about what the language doctors think / say about a language.
That was an abstract-podcast indeed!
But I see what they're getting at - they just dazzled by Ruby Sparkle. Ruby allows you to do things that C-based and Java programmers wouldn't even think of + combinations of those things let you achieve undreamt of possibilities.
Adding new methods to a built-in String class coz you feel like it, passing around unnamed blocks of code for others to execute, mixins... Conventional folks are not used to objects changing too far from the class template.
Its a whole new world out there for sure..
As for the C# guys not being OO enough... dont take it to heart.. Just take it as the stuff you speak when you are flabbergasted for words. Ruby does that to most people.
If I had to recommend one language for people to learn in the current decade.. it would be Ruby. I'm glad I did.. Although some people may claim Python. But its like my opinion.. man! :D
I don't think this is specifically about duck typing. For instance C# supports limited duck-typing already - an example would be that you can use foreach on any class that implements MoveNext and Current.
The concept of duck-typing is compatible with statically typed languages like Java and C#, it's basically an extension of reflection.
This is really the case of static vs dynamic typing. Both are proper-OO, in as much as there is such a thing. Outside of academia it's really not worth debating.
Rubbish code can be written in either. Great code can be written in either. There's absolutely nothing functional that one model can do that the other can't.
The real difference is in the nature of the coding done. Static types reduce freedom, but the advantage is that everyone knows what they're dealing with. The opportunity to change instances on the fly is very powerful, but the cost is that it becomes hard to know what you're deaing with.
For instance for Java or C# intellisense is easy - the IDE can quickly produce a drop list of possibilities. For Javascript or Ruby this becomes a lot harder.
For certain things, for instance producing an API that someone else will code with, there is a real advantage in static typing. For others, for instance rapidly producing prototypes, the advantage goes to dynamic.
It's worth having an understanding of both in your skills toolbox, but nowhere near as important as understanding the one you already use in real depth.
Object Oriented is a concept. This concept is based upon certain ideas. The technical names of these ideas (actually rather principles that evolved over the time and have not been there from the first hour) have already been given above, I'm not going to repeat them. I'm rather explaining this as simple and non-technical as I can.
The idea of OO programming is that there are objects. Objects are small independent entities. These entities may have embedded information or they may not. If they have such information, only the entity itself can access it or change it. The entities communicate with each other by sending messages between each other. Compare this to human beings. Human beings are independent entities, having internal data stored in their brain and the interact with each other by communicating (e.g. talking to each other). If you need knowledge from someone's else brain, you cannot directly access it, you must ask him a question and he may answer that to you, telling you what you wanted to know.
And that's basically it. This is real idea behind OO programming. Writing these entities, define the communication between them and have them interact together to form an application. This concept is not bound to any language. It's just a concept and if you write your code in C#, Java, or Ruby, that is not important. With some extra work this concept can even be done in pure C, even though it is a functional language but it offers everything you need for the concept.
Different languages have now adopted this concept of OO programming and of course the concepts are not always equal. Some languages allow what other languages forbid, for example. Now one of the concepts that involved is the concept of classes. Some languages have classes, some don't. A class is a blueprint how an object looks like. It defines the internal data storage of an object, it defines the messages an object can understand and if there is inheritance (which is not mandatory for OO programming!), classes also defines from which other class (or classes if multiple inheritance is allowed) this class inherits (and which properties if selective inheritance exists). Once you created such a blueprint you can now generate an unlimited amount of objects build according to this blueprint.
There are OO languages that have no classes, though. How are objects then build? Well, usually dynamically. E.g. you can create a new blank object and then dynamically add internal structure like instance variables or methods (messages) to it. Or you can duplicate an already existing object, with all its properties and then modify it. Or possibly merge two objects into a new one. Unlike class based languages these languages are very dynamic, as you can generate objects dynamically during runtime in ways not even you the developer has thought about when starting writing the code.
Usually this dynamic has a price: The more dynamic a language is the more memory (RAM) objects will waste and the slower everything gets as program flow is extremely dynamically as well and it's hard for a compiler to generate effective code if it has no chance to predict code or data flow. JIT compilers can optimize some parts of that during runtime, once they know the program flow, however as these languages are so dynamically, program flow can change at any time, forcing the JIT to throw away all compilation results and re-compile the same code over and over again.
But this is a tiny implementation detail - it has nothing to do with the basic OO principle. It is nowhere said that objects need to be dynamic or must be alterable during runtime. The Wikipedia says it pretty well:
Programming techniques may include
features such as information hiding,
data abstraction, encapsulation,
modularity, polymorphism, and
inheritance.
http://en.wikipedia.org/wiki/Object-oriented_programming
They may or they may not. This is all not mandatory. Mandatory is only the presence of objects and that they must have ways to interact with each other (otherwise objects would be pretty useless if they cannot interact with each other).
You asked: "Can someone show me an example of a wonderous thing I could do with ruby that I cannot do with c# and that exemplifies this different oop approach?"
One good example is active record, the ORM built into rails. The model classes are dynamically built at runtime, based on the database schema.
This is really probably getting down to what these people see others doing in c# and java as opposed to c# and java supporting OOP. Most languages cane be used in different programming paradigms. For example, you can write procedural code in c# and scheme, and you can do functional-style programming in java. It is more about what you are trying to do and what the language supports.
I'll take a stab at this.
Python and Ruby are duck-typed. To generate any maintainable code in these languages, you pretty much have to use test driven development. As such, it is very important for a developer to easily inject dependencies into their code without having to create a giant supporting framework.
Successful dependency-injection depends upon on having a pretty good object model. The two are sort of two sides of the same coin. If you really understand how to use OOP, then you should by default create designs where dependencies can be easily injected.
Because dependency injection is easier in dynamically typed languages, the Ruby/Python developers feel like their language understands the lessons of OO much better than other statically typed counterparts.