Non power of two textures and memory consumption optimization - optimization

I read somewhere that XNA framework upscales a texture to nearest power of two size and then sends that to VRAM, which, provided it's how it really works, might be not efficient when loading many small (in my case 150×150) textures, which essentially waste memory with unused texture data resulting from upscaling.
So is there some automatic optimization, or should I make my own implementation of it, like loading all textures, figuring out where the "upscaled" space is big enough to hold some other texture and place it there, remembering sprite positions, thus using one texture instead of two (or more)?
It isn't always handy to do this manually for each texture (placing many small sprites in a single texture), because it's hard to work with later (essentially it becomes less human-oriented), and not always a sprite will be needed in some level of a game, so it would be better if sprites were in a different composition, so it should be done automatically.

There are tools available to create what are known as "sprite sheets" or "texture atlases". This XNA sample does this for you as part of a content pipeline extension.
Note that the padding of textures only happens on devices that do not support non-power-of-two textures. Windows Phone, for example. Modern GPUs won't waste the RAM. However this is still a useful optimisation to allow you to merge batches of sprites (see this answer for details).

Related

How to reduce DrawCount in UE4 project? any optimizing professional?

I have a big project to optimize a lot of buildings, trees, and assets. I have a very high BasePass, PrePass, ShadowDepth, and Translucency. See the Image ScreenShot
Any Advice?
Ryzen 7 4800H + RTX 2060 + 16GB RAM
If we're going to reduce draw calls, we're talking about making the engine render fewer objects at once with fewer materials.
Your go to methods for this are:
-Setting up HLOD's to combine distant meshes
https://docs.unrealengine.com/4.26/en-US/BuildingWorlds/HLOD/Overview/
-Setting up HISM's/ISM's (As long as you are using DirectX 12 and not 11. With 11 it will do this by itself). Remember to only do this on objects that are beside each other or the problem can get worse.
https://www.unrealengine.com/marketplace/en-US/product/instance-tool
-Reducing the number of material slots on meshes that don't need so many or combining small meshes with similar materials. Actor merging can be great for this, just be careful of going overboard because it can make light baking & lightmap memory usage a pain.
https://docs.unrealengine.com/4.26/en-US/Basics/Actors/Merging/
-Reducing the max draw distance on some of your smaller meshes that are close to the ground. You can find this in the mesh's rendering settings.
Any of these things would reduce draw calls, just be careful with it. Too much optimization by any one method can always make the problem worse by creating bottlenecks elsewhere. When we're reducing draw calls we're also risking slowing down occlusion calculation times or potentially creating a memory bandwidth bottleneck.
Once you get that draw thread time down the next thing I'd go onto is looking at reducing the number of movable lights, objects casting dynamic shadows, and translucent objects casting dynamic shadows. Those are some common culprits of other optimization issues.

Custom rendering with GPU, Direct3D or OpenGL

I have a Windows application that currently renders graphics largely using MFC that I'd like to change to get better use out of the GPU. Most of the graphics are straightforward and could easily be built up into a scene graph, but some of the graphics could prove very difficult. Specifically, in addition to the normal mesh type objects, I'm also dealing with point clouds which are liable to contain billions of Cartesian stored in a very compact manner that use quite a lot of custom culling techniques to be displayed in real time (Example). What I'm looking for is a mechanism that does the bulk of the scene rendering to a buffer and then gives me access to that buffer, a z buffer, and camera parameters such that I can modify them before putting them out to the display. I'm wondering whether this is possible with Direct3D, OpenGL or possibly use a higher level framework like OpenSceneGraph, and what would be the best starting point? Given the software is Windows based, I'd probably prefer to use Direct3D as this is likely to lead to fewest driver issues which I'm eager to avoid. OpenSceneGraph seems to provide custom culling via octrees, which are close but not identical to what I'm using.
Edit: To clarify a bit more, currently I have the following;
A display list / scene in memory which will typically contain up to a few million triangles, lines, and pieces of text, which I cull in software and output to a bitmap using low performing drawing primitives
A point cloud in memory which may contain billions of points in a highly compressed format (~4.5 bytes per 3d point) which I cull and output to the same bitmap
Cursor information that gets added to the bitmap prior to output
A camera, z-buffer and attribute buffers for navigation and picking purposes
The slow bit is the highlighted part of section 1 which I'd like to replace with GPU rendering of some kind. The solution I envisage is to build a scene for the GPU, render it to a bitmap (with matching z-buffer) based on my current camera parameters and then add my point cloud prior to output.
Alternatively, I could move to a scene based framework that managed the cameras and navigation for me and provide points in view as spheres or splats based on volume and level of detail during the rendering loop. In this scenario I'd also need to be able add cursor information to the view.
In either scenario, the hosting application will be MFC C++ based on VS2017 which would require too much work to change for the purposes of this exercise.
It's hard to say exactly based on your description of a complex problem.
OSG can probably do what you're looking for.
Depending on your timeframe, I'd consider eschewing both OpenGL (OSG) and DirectX in favor of the newer Vulkan 3D API. It's a successor to both D3D and OGL, and is designed by the GPU manufacturers themselves to provide optimal performance exceeding both of its predecessors.
The OSG project is currently developing a Vulkan scenegraph known as VSG, which already demonstrates superior performance to OSG and will have more generalized culling ability.
I've worked a bunch with point clouds and am pretty experienced with them, but I'm not exactly clear on what you're proposing to do.
If you want to actually have a verbal discussion about the matter, I'm pretty easy to find (my company is AlphaPixel -- AlphaPixel.com) and you could call us. I'm in the European time zone right now, it's not clear from your question where you are but you sound US-based.

Effort Required to make 3D Game Engine?

For the sake of theory (and general understanding),
I would like to understand in a moderately exhaustive list of all the things that must be done in order to create a "modern" 3D Game Engine (from a coder's perspective)
I seem to have a hard time finding this information anywhere else, so I think that you guys at Stack overflow will have the knowledge I seek.
In terms of "moderately exhaustive", I mean such things as a general explanation of the design stages of such engine, such as Binary Space Partitioning, then actual implementation of such an engine, and the uses of the software ( it would be helpful if the means of rendering other than BSP could be explained).
I don't want to make a 3D Engine, but simply understand what sheer amount of effort is required to make one.
Focusing on 3D rendering alone:
Binary space partitioning, like many elements of 3d rendering, is optional. In this case, it is an optimization, allowing the computer to do less work to render a scene, by cutting out invisible sections.
At its core, rendering is simply a five stage process. First, a list of triangles is generated. Next, the triangles are converted from 3-space to 2-space using matrix multiplication. Next, the triangles are filled in with pixels and meta information. Finally, the pixels are shaded individually using the meta-information. Extra finally, the pixels are drawn to the screen.
Most of those steps are partially or wholly done by a graphics card, meaning the programmer's job is to tell the card which step to perform and provide the input data.
This bare bones engine is not even close to a modern engine, however. Modern engines will be filled with optimizations like binary space partitioning, mesh simplification, background loading and texture compression. They will also be filled with special features like shadows, mirrors, mist and particle effects.
Modern engines have to be able to load and interpret textures and meshes, and in some cases, deform and modify both at runtime. The most common example would be interpolating between keyframes.
Engines may need to interact with game logic modules in order to reuse data for collision detection. Collision detection being the thing that determines if bullets hit something and also the thing that makes makes walls and floors real.

At what phase in rendering does clipping occur?

I've got some OpenGL drawing code that I'm trying to optimize. It's currently testing all drawing objects for visibility client-side before deciding whether or not to send rendering data to OpenGL. (This is easier than it sounds. It's drawing a 2D scene so clipping is trivial: just test against the current coordinates of the viewport rectangle.)
It occurs to me that the entire model could be greatly simplified by passing the entire scene to OpenGL and letting the GPU take care of the clipping. But sometimes the total can be very, very complex, involving up to 100,000 total sprites, most of which never get rendered because they're off-camera, and I'd prefer to not end up killing the framerate in the name of simplicity.
I'm using OpenGL 2.0, and I've got a pretty simple vertex shader and a much more complicated fragment shader. Is there any guarantee that says that if the vertex shader runs and determines coordinates that are completely off-camera for all vertices of a polygon, that a clipping test will be applied somewhere between there and the fragment shader and prevent the fragment shader from ever running for that polygon? And if so, is this automatic or is there something I need to do to enable it? I've looked around online for information on this but I haven't found anything conclusive...
Clipping happens after the vertex transform stage before and after the NDC space; clip planes are applied in clip space, viewport clipping is done in NDC space. That is one step before rasterizing. Clipping means, that a face only partially visible is "cut" by inserting new vertices at the visibility border, or fragments outside the viewport discarded. What you mean is usually called culling. Faces completely outside the viewport are culled, at the same stage like clipping.
From a performance point of view, the best code is code never executed, and the best data is data never accessed. So in your case sending off a single drawing call that makes the GPU process a large batch of vertices clearly takes load off the CPU, but it consumes GPU processing power. Culling those vertices before sending the drawing command consumes CPU power, but takes load off the GPU. The goal is to find the right balance. If the number of vertices is low, a simple brute force approach (just render the whole thing) may easily outperform ever other scheme.
However using a simple, yet effective data management scheme can greatly improve performance on both ends. For example a spatial subdivision structure like a Kd tree is easily built (you don't have to balance it). Sorting the vertices into the Kd tree you can omit (cull) large portions of the tree if one branch near to the root is completely outside the viewport. Preparing drawing a frame you iterate through the visible parts of the tree, building the list of vertices to draw, then you pass this list to the rendering command. Kd trees can be traversed on average in O(n log n) time.
It's important to understand the difference between clipping and culling. You appear to be talking about the latter.
Clipping means taking a triangle and literally cutting it into pieces to fit into the viewport. The OpenGL specification defines this process to happen post-vertex shader, for any triangle that is only partially in view.
Culling means throwing something away entirely. If a triangle is not entirely in view, it can therefore be culled. OpenGL does not say that culling has to happen. Remember: the OpenGL specification defines behavior, not performance.
That being said, hardware makers are not stupid. Obvious efforts like not rasterizing triangles that are outside of the viewport are easily implemented and improve performance. Pretty much any hardware that exists will do this.
Similarly, clipping is typically implemented (where possible) with rasterizer tricks, rather than by creating new triangles. Fragments that would be outside of the viewport simply aren't generated by the rasterizer. This is also legal according to OpenGL, because the spec defines apparent behavior. It doesn't really care if you actually cut the triangle into pieces as long as it looks indistinguishable form if you did.
Your question is essentially one of, "How much work should I do to not render off-screen objects?" That really depends on what your scene is and how you're rendering it. You say you're rendering 100,000 sprites. Are you making 100,000 draw calls, or are these sprites part of larger structures that you render with larger granularity? Do you stream the vertex data to the GPU every frame, or is the vertex data static?
Clipping and culling happen before fragment processing. http://www.opengl.org/wiki/Rendering_Pipeline_Overview
However, you will still be passing 100000 * 4 vertices (assuming you're rendering the sprites with quads and not point sprites) to the card if you don't do culling yourself. Depending on the card's memory performance this can be an issue.

Planning a 2D tile engine - Performance concerns

As the title says, I'm fleshing out a design for a 2D platformer engine. It's still in the design stage, but I'm worried that I'll be running into issues with the renderer, and I want to avoid them if they will be a concern.
I'm using SDL for my base library, and the game will be set up to use a single large array of Uint16 to hold the tiles. These index into a second array of "tile definitions" that are used by all parts of the engine, from collision handling to the graphics routine, which is my biggest concern.
The graphics engine is designed to run at a 640x480 resolution, with 32x32 tiles. There are 21x16 tiles drawn per layer per frame (to handle the extra tile that shows up when scrolling), and there are up to four layers that can be drawn. Layers are simply separate tile arrays, but the tile definition array is common to all four layers.
What I'm worried about is that I want to be able to take advantage of transparencies and animated tiles with this engine, and as I'm not too familiar with designs I'm worried that my current solution is going to be too inefficient to work well.
My target FPS is a flat 60 frames per second, and with all four layers being drawn, I'm looking at 21x16x4x60 = 80,640 separate 32x32px tiles needing to be drawn every second, plus however many odd-sized blits are needed for sprites, and this seems just a little excessive. So, is there a better way to approach rendering the tilemap setup I have? I'm looking towards possibilities of using hardware acceleration to draw the tilemaps, if it will help to improve performance much. I also want to hopefully be able to run this game well on slightly older computers as well.
If I'm looking for too much, then I don't think that reducing the engine's capabilities is out of the question.
I think the thing that will be an issue is the sheer amount of draw calls, rather than the total "fill rate" of all the pixels you are drawing. Remember - that is over 80000 calls per second that you must make. I think your biggest improvement will be to batch these together somehow.
One strategy to reduce the fill-rate of the tiles and layers would be to composite static areas together. For example, if you know an area doesn't need updating, it can be cached. A lot depends of if the layers are scrolled independently (parallax style).
Also, Have a look on Google for "dirty rectangles" and see if any schemes may fit your needs.
Personally, I would just try it and see. This probably won't affect your overall game design, and if you have good separation between logic and presentation, you can optimise the tile drawing til the cows come home.
Make sure to use alpha transparency only on tiles that actually use alpha, and skip drawing blank tiles. Make sure the tile surface color depth matches the screen color depth when possible (not really an option for tiles with an alpha channel), and store tiles in video memory, so sdl will use hardware acceleration when it can. Color key transparency will be faster than having a full alpha channel, for simple tiles where partial transparency or blending antialiased edges with the background aren't necessary.
On a 500mhz system you'll get about 6.8 cpu cycles per pixel per layer, or 27 per screen pixel, which (I believe) isn't going to be enough if you have full alpha channels on every tile of every layer, but should be fine if you take shortcuts like those mentioned where possible.
I agree with Kombuwa. If this is just a simple tile-based 2D game, you really ought to lower the standards a bit as this is not Crysis. 30FPS is very smooth (research Command & Conquer 3 which is limited to 30FPS). Even still, I had written a remote desktop viewer that ran at 14FPS (1900 x 1200) using GDI+ and it was still pretty smooth. I think that for your 2D game you'll probably be okay, especially using SDL.
Can you just buffer each complete layer into its view plus an additional tile size for all four ends(if you have vertical scrolling), use the buffer again to create a new buffer minus the first column and drawing on a new end column?
This would reduce a lot of needless redrawing.
Additionally, if you want a 60fps, you can look up ways to create frame skip methods for slower systems, skipping every other or every third draw phase.
I think you will be pleasantly surprised by how many of these tiles you can draw a second. Modern graphics hardware can fill a 1600x1200 framebuffer numerous times per frame at 60 fps, so your 640x480 framebuffer will be no problem. Try it and see what you get.
You should definitely take advantage of hardware acceleration. This will give you 1000x performance for very little effort on your part.
If you do find you need to optimise, then the simplest way is to only redraw the areas of the screen that have changed since the last frame. Sounds like you would need to know about any animating tiles, and any tiles that have changed state each frame. Depending on the game, this can be anywhere from no benefit at all, to a massive saving - it really depends on how much of the screen changes each frame.
You might consider merging neighbouring tiles with the same texture into a larger polygon with texture tiling (sort of a build process).
What about decreasing the frame rate to 30fps. I think it will be good enough for a 2D game.