objective-c instance variables - objective-c

There was a question couple years back re instance vs class methods.
It was illustrated with the code below. I understand for the most part, except why do I need both instance variable "age" and instance method "age"?
Won't getter and setter for instance variable "age" be created with #synthetize?
Static int numberOfPeople = 0;
#interface MNPerson : NSObject {
int age; //instance variable
}
+ (int)population; //class method. Returns how many people have been made.
- (id)init; //instance. Constructs object, increments numberOfPeople by one.
- (int)age; //instance. returns the person age
#end
#implementation MNPerson
- (id)init{
if (self = [super init]){
numberOfPeople++;
age = 0;
}
return self;
}
+ (int)population{
return numberOfPeople;
}
- (int)age{
return age;
}
#end
main.m:
MNPerson *micmoo = [[MNPerson alloc] init];
MNPerson *jon = [[MNPerson alloc] init];
NSLog(#"Age: %d",[micmoo age]);
NSLog(#"%Number Of people: %d",[MNPerson population]);
(Original code from #micmoo)

The instance method age is for encapsulation. It lets subclasses override the method, providing a different implementation if they need to. For example, a subclass may want to calculate the age based on the initial date and the current date, rather than storing it. If you use an instance variable, subclasses would have no option to override age; if you add an instance method, then subclasses would be able to provide new implementation.
Another advantage is that you cannot write to age: the users of your class can get the age, but they cannot set it.
Won't getter and setter for instance variable "age" be created with #synthetize?
The #synthesize requires a property declaration, which is missing from the class. Properties are relatively new to the language, which may explain the reason why they are not used in the code that you found.
The current way of doing the same thing is declaring a property instead of an ivar and an accessor, and skipping the #synthesize altogether:
#property (nonatomic, readonly) int age;
You can write to age from inside the class by assigning _age, the backing variable created automatically; the users can read the value by using either [obj age] or obj.age syntax.

This code was apparently written prior to the introduction of declared properties and the #sythesize directive, which were introduced with so-called "Objective-C 2.0" at the time of Mac OS X Leopard. A brief introduction is available at The Cacao, which will demonstrate to you what the old way looked like.
Yes, it would be far better to do it the modern way, but in those dark ages, we had to declare every ivar in the class's interface, and to write every setter and getter manually. Every single one, uphill both ways, in the snow, with no boots.

Related

Objective-C: Overriding Getter & Setter with Instance Variable (using _) [duplicate]

This question already has answers here:
Error accessing generated ivars when I override setters and getters in Modern Objective-C
(3 answers)
Closed 5 years ago.
I'm learning the Swift programing language and during this I sometimes get in touch with the old Objective-C programming language and its code.
I'm an absolutely beginner and therefore I have some question for better understanding the Setter and Getter.
So, I know that I can create an instance variable through curly braces in the .h file but normally I use properties. These properties are backed by an instance variable and offer automatically a Getter and Setter Method.
Example:
Vehicle .h file:
#interface Vehicle : NSObject
#property int myProperty;
#end
Because I created this property I don't have to declare a Getter and Setter method in the vehicle.m file because they are automatically created by the compiler. So I can create a vehicle-object, set and get the value.
Example
main.m
Vehicle *myvehicle = [[vehicle alloc] init];
[myvehicle myProperty] // myvehicle.myProperty
[myvehicle setMyProperty : 10] // myvehicle.myProperty = 10;
Now I read that it is possible to override the automatically created Getter and Setter method of my created property "myProperty". When declaring my own version of the Getter and Setter I have to declare two methods in the vehicle.h and vehicle.m file. In the vehicle.m file I don't call the object by using the self keyword but by using it's automatically created instance variable (_myProperty). Is it right?
I tried it but alway get an error and I don't know why and what is the point.
Example
Vehicle .h file:
#interface Vehicle : NSObject
#property int myProperty;
-(int) myProperty; //my new Getter method
-(void) setMyProperty: (int)updatedMyProperty; //My new Setter method
#end
vehicle .m file:
#implementation Vehicle
-(int) myProperty {
if (! _myProperty) {
_myProperty = NO;
}
return _myProperty;
}
-(void) setMyProperty: (int)updatedMyProperty {
if (_myProperty == updatedMyProperty) return;
_myProperty = updatedMyProperty;
}
#end
I always get the error "Use of undeclared identifier" and I don't know why. If I understand right I don't have to declare the ivar or its name using #synthesize because the compiler automatically creates the ivar called _myProperty for me. I just have to use #synthesize when I want to change the ivar's name.
I'm not sure why I get stuck and what the point is. Could you explain it?
Thanks in advance!
If you implement all of the accessor methods, the compiler will no longer automatically synthesize the ivar for you. In this case, you have to explicitly do so yourself. E.g.
#synthesize myProperty = _myProperty;
This is only necessary when you have manually implemented all of the accessor methods. The reason is that the compiler is smart enough to know that if you're taking over the accessor methods, you may well not need the ivar, namely that you might be doing something radically different, e.g. computing values from some other property, setting/getting values from some different store, etc. You may want the compiler to synthesize the ivar (in which case you add the above #synthesize statement), but it's equally likely that you've implemented the accessor methods because no backing ivar is needed (in which case you'd omit the above #synthesize statement).
Anyway, staying with your simple example, you get something like:
#interface Vehicle : NSObject
#property (nonatomic) int myProperty; // if you don't write atomic accessor methods, you really should be explicit that this is nonatomic
// as an aside, even if you implement accessor methods, you don't have to declare them here
//
// -(int) myProperty; //my new Getter method
// -(void) setMyProperty: (int)updatedMyProperty; //My new Setter method
#end
And
#implementation Vehicle
// since you implemented all of the accessor properties, you have to manually synthesize the ivar
#synthesize myProperty = _myProperty;
- (int) myProperty {
// do whatever you want here; note, the following doesn't make sense
//
// if (! _myProperty) {
// _myProperty = NO;
// }
return _myProperty;
}
- (void)setMyProperty:(int)updatedMyProperty {
if (_myProperty == updatedMyProperty) return;
_myProperty = updatedMyProperty;
}
#end
Clearly, there's no point in writing these particular accessor methods in the above example, because you're not offering any new functionality, so you wouldn't. You'd just avail yourself of the auto-synthesized accessor methods.
But in those cases that you really need to write your own accessor methods, then you have to explicitly tell the compiler whether you need it to synthesize the ivar for you, too, or not.

Setting default values for inherited property without using accessor

I always see people debating whether or not to use a property's setter in the -init method. My problem is how to create a default value in a subclass for an inherited property. Say we have a class called NSLawyer -- a framework class, that I can't change -- with an interface that looks like this:
#interface NSLawyer : NSObject {
#private
NSUInteger _numberOfClients;
}
#property (nonatomic, assign) NSUInteger numberOfClients;
#end
And an implementation that looks like this:
#implementation NSLawyer
- (instancetype)init
{
self = [super init];
if (self) {
_numberOfClients = 0;
}
return self;
}
#end
Now let's say I want to extend NSLawyer. My subclass will be called SeniorPartner. And since a senior partner should have lots of clients, when SeniorPartner gets initialized, I don't want the instance to start with 0; I want it to have 10. Here's SeniorPartner.m:
#implementation SeniorPartner
- (instancetype)init
{
self = [super init];
if (self) {
// Attempting to set the ivar directly will result in the compiler saying,
// "Instance variable _numberOfClients is private."
// _numberOfClients = 10; <- Can't do this.
// Thus, the only way to set it is with the mutator:
self.numberOfClients = 10;
// Or: [self setNumberOfClients:10];
}
return self;
}
#end
So what's a Objective-C newcomer to do? Well, I mean, there's only one thing I can do, and that's set the property. Unless there's something I'm missing. Any ideas, suggestions, tips, or tricks?
You should do exactly has you have; call the accessor. The declaring class typically avoids calling its own accessors in init to avoid accidentally calling an overridden accessor in a subclass that might rely on the consistency of data you haven't initialized yet. Your superclass on the other hand should be completely consistent by the time the subclass's init is run, so there is no problem using superclass accessors at that time.
Consider the common and general case: you want to set your transform in a UIView subclass. How would you solve that other than call setTransform:? Subclassing non-Apple code is no different.
Make it #protected. It is very rare to make an ivar or property private these days. Private ivars and/or properties are better declared in the implementation. For that matter #protected ivars/properties are rarely seen in Objective-C but perfectly fine.
Using a setter either as a method or with dot notation is just wrong (yes it works but is really bad form), if you want use setters/getters declare a property.

OOP In Objective-C

I am familiar with OOP as I have been coding in Java for a while now, but I am having (syntax?) trouble in Objective-C. I have been looking at other posts on here but nothing has helped so far.
I have a class named "Play_Name.m" that has a method that sets a players name at the touch of a button and another method that gets the name and returns a string, (NSString*)get_name. I also have another class named "Play_ChooseChar.m" which is supposed to display the name entered in by calling the get_name function.
get_name returns the correct name when I call it in "Play_Name" (it's owner), but when I call it in "Play_ChooseChar" it returns (null).
//Play_Name code below
#import "Play_Name.h"
#interface Play_Name ()
#end
#implementation Play_Name
#synthesize playerName;
#synthesize textName;
-(IBAction)set:(id)sender {
[self setPlayerName:(self.textName.text)];
if([self.textName.text length] <= 0) {
playerName = #"Player";
NSLog(#"YOUR NAME: %#", playerName);
}
NSLog(#"YOUR NAME: %#", playerName);
}
//...........
#end
//Play_ChooseChar code below
#import "Play_ChooseChar.h"
#import "Play_Name.h"
#interface Play_ChooseChar ()
#end
#implementation Play_ChooseChar
#synthesize display_name;
#synthesize playname;
#synthesize boy;
#synthesize girl;
#synthesize isGirl;
#synthesize isBoy;
bool isGirl = FALSE;
bool isBoy = FALSE;
-(void)theName {
Play_Name *pN = [[Play_Name alloc] init];
[pN setPlayerName: pN.playerName];
NSLog(#"NAME: %#", pN.playerName);
self.display_name.text = pN.playerName;
//display_name.text = #"test";
[pN release];
//............
#end
So when I run it and enter my name, the print statement from "Play_ChooseChar" returns 'NAME: (null)'
Opening lecture: you seem to be throwing Objective-C conventions to the wind. Getters shouldn't refer to the act of getting — so you'd implement name, not get_name and almost the only verb you'll see is 'is', in the sense of isValid ala NSTimer. Objective-C also uses camel case, starting with a lower-case character so player_name should be playerName. Similarly your class should have a three-letter prefix (as Objective-C doesn't do namespaces) and also be camel case, e.g. ATPPlayName.
Lecture points aside, this:
Play_Name *play_name = [[Play_Name alloc] init];
creates a brand new instance of Play_Name. It's not the same as whatever instance you're using elsewhere. That instance doesn't have a name attached yet. So when you ask it for the name in the next line, it's nil.
You haven't really shown enough code to determine the problem. However, I would recommend using properties rather than methods which follow your own naming convention. For example:
#interface Player: NSObject
#property NSString* name;
#property NSString* character;
#end
The above defines a class Player with the properties name and character. Xcode will generate the appropriate accessor methods and instance variables that 'back' these properties. See the language reference for more details.
You should create properties, and xcode will automatically create getter & setter for you.
Have a look here:
putting design and code conventions aside:
when you create a new Play_Name instance, its get_name will return nil, obviously, because nowhere in the code have you called set_name before calling get_name.
You should first do:
[play_name set_name:#"john"];
And, assuming your set_name method is implemented correctly, [play_name get_name] should then return the correct value.
I second the others who recommend to use properties since it takes care of most memory mgmt nuances for you. You can read more about this here:
Objective-C: Declared Properties

Objective-C : Need advice on setting instance variables in init method

I am using ARC.
This is my .h file
...
- (id)initWithCoordinate:(CLLocationCoordinate2D)c title:(NSString *)t;
#property (nonatomic, readonly) CLLocationCoordinate2D coordinate;
#property (nonatomic, copy) NSString *title;
...
This is my .m file
....
#synthesize coordinate, title;
- (id)initWithCoordinate:(CLLocationCoordinate2D)c title:(NSString *)t
{
self = [super init];
if (self) {
coordinate = c;
[self setTitle:t];
}
return self;
}
....
Is setting coordinate this way, the right way to do it? Given that I declare it as readonly, it seems like it is the only way to do it. What if I just use the default (i.e. readwrite), in this case, should I use the setter method [self setCoordinate] instead?
I could set the title by doing title = t as well. Compare to using the setter method, the result is the same, but what is the difference ?
Thanks! Wish I could accept all of your answers.
You're actually supposed to set ivars directly in an initializer method all the time. This is true whether or not you have a readonly or readwrite property. The documentation here even says so.
The reasoning behind this has to do with inheritance. If someone were to subclass your class and overwrite the setters for your properties such that they bypass the ivars you created (or do some other wacky thing), then suddenly your original implementation of your initializer method now no longer does what it is written to do. In particular, your initializer could end up creating an object with a weird state due to the subclass overriding your accessors. In the pre-ARC days, you could also end up with tricky (or just straight-up broken) memory situations when this sort of thing happens. The take-away message is: you should write initializers so that they will always create an object with a known valid state.
So (assuming you're using ARC) your initializer should actually be:
- (id)initWithCoordinate:(CLLocationCoordinate2D)c title:(NSString *)t
{
self = [super init];
if (self) {
coordinate = c;
title = [t copy];
}
return self;
}
Personally, I prefer to synthesize ivars with a starting underscore to clarify when I'm using the property and when I'm accessing the ivar directly (LLVM 4.0 now does this to automatically synthesized properties as well).
#synthesize coordinate = _coordinate;
#synthesize title = _title;
- (id)initWithCoordinate:(CLLocationCoordinate2D)c title:(NSString *)t
{
self = [super init];
if (self) {
_coordinate = c;
_title = [t copy];
}
return self;
}
1: As your code is now, yes, that is the right way to do it. If you weren't using ARC (assuming you are currently), you'd also want to retain the value to assert ownership. This will be done automatically under ARC. Keep in mind that that is not the only way of doing it; you could redeclare the property as readwrite in the class extension in the implementation file. This is a common practice which allows you to have the benefits of a readwrite property while having the property still be readonly to users of the class. Ex.
//MyClass.h
#interface MyClass : NSObject
#property (nonatomic, strong, readonly) NSNumber* number;
- (void) initWithNumber:(NSNumber*)number;
#end
//MyClass.m
#interface MyClass ()
#property (nonatomic, strong, readwrite) NSNumber* number;
#end
#implementation MyClass
//this changes the instance variable backing the property to _number.
#synthesize number = _number;
- (void) initWithNumber:(NSNumber*)number{
self = [super init];
if (self) {
self.number = number;
}
return self;
}
#end
At the end of the day, I'd say it's a good habit to use setters whenever you can to keep things KVO compliant and so that you always know when values change. For instance, if you have a custom UIView with a property that is reflected in its appearance, chances are you'd want to redisplay yourself when it changes. The easiest way to do this is to implement the setter yourself and call setNeedsDisplay after setting the value. You couldn't do that if you set the instance value backing the property directly; the user of the class would have to remember to call setneedsDisplay every time they set it, manually.
2: One goes through the setter method, giving you a way to know when a value is going to be set, while one sets a value to the instance variable backing the property. The setter method will always handle memory management in the way it was told to, while it's up to you to do things such as copying values for a copy setter if you assign directly to an instance variable, so that you maintain some consistent scheme. Going through setters sometimes, and not others can lead to some nasty bugs if you don't be careful. Never going through setters makes it hard to know when values change, making it near impossible to weed out invalid values. For instance, if you had an int property you wanted to limit to values in some range and someone passed in a value under the minimum limit, you'd probably want to set the property to the lowest possible value in the range. You can't do that without the value going through the setter first.
Yes, it is fine to set it like that. If you prefer to use a property all the time you can override the property to be read/write rather than read-only in a class extension. In Foo.m:
#interface Foo ()
#property (nonatomic) CLLocationCoordinate2D coordinate;
#end
#implementation Foo {
// ...
self.coordinate = c;
}
Setting the coordinate that way is correct, and is the only way to do it if you have declared the property readonly.
Setting the title using title = t is different than setting the title using [self setTitle:t]. If you directly assign to the instance variable, you will just retain the NSString instance that was passed as argument t. But if you using the accessor method, the accessor will ask the string to copy itself (because you declared the property copy). If the string you were given as argument t is actually an NSMutableString, then you will get an immutable copy of it. If the string you were given as argument t is already an immutable string, it will just return itself when asked for a copy.
self.coordinate = c;
is essentially compiled to be the same as calling
[self setCoordinate:c];
The difference between coordinate = c and [self setCoordinate:c]; is that the first is just setting a variable directly where as the second is calling a method.
The reason to be wary is that methods could potentially have side effects depending on how the implementation is written e.g. (stupid example)
- (void)setCoordinate:(CLLocationCoordinate2D)coordinate;
{
_coordinate = coordinate;
[self doSomethingCrazy];
}

obj c: accessor: self vs myInstance

In Apple's The Objective-C Programming Language p. 18, they make a distinction between setting a variable with self versus instance reference. e.g
myInstance.value =10;
self.value =10;
1. Would these two set different properties named value?
2. How could self work if there are several instances with properties named value?
They also assert, "If you do not use self., you access the instance variable directly." This would mean that the accessor would not be called if you use
myInstance.value =10;
and KVO wouldn't work. Is this true?
3. Using #Property and #Synthesize (with garbage collection), what is the proper way to set properties of different instances? And what good is the self reference?
A numeric example would help me, please.
1 - Would these two set different properties named value?
No, I think you misunderstand what the guide is saying when it makes a distinction between self.value and myInstance.value. In both cases the setter function (i.e., setValue:) is called.
You use self to access your own properties (that is, referencing properties from within functions in a class that you wrote). Like:
#interface MyObject : NSObject
#property( nonatomic ) NSInteger value;
- (void) doSomething;
#end
#implementation MyObject
#synthesize value;
- (void) doSomething
{
self.value = 10;
}
#end
Whereas you'd use myInstance to set a property in some other variable, from outside that class.
MyObject* anObject = [[MyObject alloc] init];
anObject.value = 10;
2 - How could self work if there are several instances with properties named value?
It wouldn't. See above.
They also assert, "If you do not use self., you access the instance variable directly." This would mean that the accessor would not be called if you use myInstance.value =10; and KVO wouldn't work. Is this true?
No. self.value and myInstance.value both call their accessors (setValue: in this case), and KVO will work. What that assertion means is that if you access an ivar from within your own class, not using the accessor, KVO will not work.
#interface MyObject : NSObject
#property( nonatomic ) NSInteger value;
- (void) doSomething;
#end
#implementation MyObject
#synthesize value;
- (void) doSomething
{
self.value = 10; // This invokes the accessor, and KVO works.
value = 10; // This just sets the instance variable, and KVO won't work.
}
#end
Using #Property and #Synthesize (with garbage collection), what is the proper way to set properties of different instances? And what good is the self reference? A numeric example would help me, please.
Just as shown above, use the instance name. self is only used for accessing properties within a class. Examples above.
The best way to under stand self is to think of how it is implemented, as a hidden argument with every method call so the method -[UIView drawRect:] has a c function implementation like
BOOL drawRect:( UIView * self, SEL _cmd, NSRect r ) { }; // of cause : is not legal in c
and calling the method is a little like (ignoring the dynamic look up)
UIView * v = ...
NSRect r = ...
drawRect:( v, #selector(drawRect:), r );
so if you invoke a property in the drawRect: implementation you are doing it for the hidden object parameter called self.
Accessing the instance variable directly will stop KVO from working, but sometimes you want that, for example when initialising them perhaps.
IF you mean automatic reference counting when you say Garbage Collection, most of the time for objects you want them to be strong or copy, immutable strings using copy will be turned into a retain and if it is mutable then you often want a copy to protect against the original being changed underneath you.
One potential issue with strong is that you can end up with circular references where if you follow the links around you comeback to the original object so each object is indirectly retaining itself and you have a catch-22 situation where the object has to release itself before it can release itself. So in these situations you need to use weak. You can usually workout who should retain and who should weak by think about which object conceptually owns the other.
For non-object you have to use assign.
self.property and [self method]; are strictly used within a class to refer to itself. You do not ever refer to the object within itself with anything but self.
On the contrary, use instances of an object to refer to an object from another class. For instance, I would refer to a UIImageView from my viewController in a way like:
UIImageView* imgView = [[UIImageView alloc] init];
[imgView setFrame:CGRectMake(0,0,320,480)];
But if I were editing a subclass of UIImageView that I called, say rotatingImageView:
#implementation rotatingImageView
-(id)init
{
//Super instantiation code that I don't remember at the moment goes here
[self setFrame:CGRectMake(0,0,320,480)];
}
This is just an example of a method.
Once again, you use self strictly within its own class, and you use other variables to reference an instance of another class.
Hope that makes sense.
My big problem was how an ivar and a property could be tied together when they have different names, especially with multiple ivars.
I finally found that if name of property doesn't match name of ivar, a new ivar is synthesized. This is accessed by self.propertyname (within object) or object.propertyname (outside of object), not the declared ivar.
To tie disparate names of ivar and property, equate them as in
#synthesize propertyname = ivarname.
Thanks to
http://blog.ablepear.com/2010/05/objective-c-tuesdays-synthesizing.html