What Database for extensive logfile analysis? - sql

The task is to filter and analyze a huge amount of logfiles (around 8TB) from a finished research project. The idea is to fill a database with the data to be able to run different analysis tasks later.
The values are stored comma separated. In principle the values are tuples of up to 5 values:
id, timestamp, type, v1, v2, v3, v4, v5
In a first try using MySQL I used one table with one log entry per row. So there is no direct relation between the log values. The downside here is slow querying of subsets.
Because there is no relation I looked into alternatives like NoSQL databases, and column based tables like hbase or cassandra seemed to be a perfect fit for this kind of data. But these systems are made for huge distributed systems, which we not have. In our case the analysis will run on a single machine or perhaps some VMs.
Which kind of database would fit this task? Is it worth to setup a single machine instance with hadoop+hbase... or is this all a bit over-sized?
What database would you choose to do high-performance logfile analysis?
EDIT: Maybe out of my question it is not clear that we cannot spend money for cloud services or new hardware. The Question is if there are benefits in using noSQL approaches instead of mySQL (especially for this data). If there are none, or if they are so small that the effort of setting up a noSQL system is not worth the benefit we can use our ESXi infrastructure and MySQL.
EDIT2: I'm still having the Problem here. I did further experiments with MySQL and just inserted a quarter of all available data. The insert is now running for over 2 days and is not yet finished. Currently there are 2,147,483,647 rows in my single table db. With indeces this takes 211,2 GiB of disk space. And this is just a quarter of all logging data...
A query of the form
SELECT * FROM `table` WHERE `timestamp`>=1342105200000 AND `timestamp`<=1342126800000 AND `logid`=123456 AND `unit`="UNIT40";
takes 761 seconds to complete, in this case returning one row.
There is a combined index on timestamp, logid, unit.
So I think this is not the way to go, because later in analysis I will have to get all entries in a time range and compare the datapoints.
I read bout MongoDB and Redis, but the problem with them is, that they are in Memory databases.
In the later analyzing process there will a very small amount of concurrent database access. In fact the analyzing will be run from one single machine.
I do not need redundancy. I would be able to regenerate the database in case of a failure.
When the database is once completely written, there would also be no need to update or add further row.
What do you think about alternatives like Redis, MongoDB and so on. When I get this right, i would need RAM in the dimension of my data...
Is this task even somehow possible with a single node system or with maybe two nodes?

well i personally would prefer the faster solution, as you said you need a high-perfomance analysis. the problem is, if you have to setup a whole new system to do so and the performance-improvement would be minor in relation to the additional effort you'd need, then stay with SQL.
in our company, we have a quite small Database containing not even half a GB of Data on the VM. the problem now is, as soon as you use a VM, you will have major performance issues, when opening the Database on VM you can go for a coffee in the meantime ;)
But if the time until the Database is loaded to cache is not so important it doesn't matter. It all depends on how much faster you think the new System will be, and how much effort you will have to put in it, but as i said i'd prefer the faster solution if you have to go for "high-performance analysis"

Related

Pros and Cons of using MongoDB instead of MS SQL Server [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 4 years ago.
Improve this question
I am new to NoSQL world and thinking of replacing my MS Sql Server database to MongoDB. My application (written in .Net C#) interacts with IP Cameras and records meta data for each image coming from Camera, into MS SQL Database. On average, i am inserting about 86400 records per day for each camera and in current database schema I have created separate table for separate Camera images, e.g. Camera_1_Images, Camera_2_Images ... Camera_N_Images. Single image record consists of simple metadata info. like AutoId, FilePath, CreationDate. To add more details to this, my application initiates separate process (.exe) for each camera and each process inserts 1 record per second in relative table in database.
I need suggestions from (MongoDB) experts on following concerns:
to tell if MongoDB is good for holding such data, which eventually will be queried against time ranges (e.g. retrieve all images of a particular camera between a specified hour)? Any suggestions about Document Based schema design for my case?
What should be the specs of server (CPU, RAM, Disk)? any suggestion?
Should i consider Sharding/Replication for this scenario (while considering the performance in writing to synch replica sets)?
Are there any benefits of using multiple databases on same machine, so that one database will hold images of current day for all cameras, and the second one will be used to archive previous day images? I am thinking on this with respect to splitting reads and writes on separate databases. Because all read requests might be served by second database and writes to first one. Will it benefit or not? If yes then any idea to ensure that both databases are synced always.
Any other suggestions are welcomed please.
I am myself a starter on NoSQL databases. So I am answering this at the expense of potential down votes but it will be a great learning experience for me.
Before trying my best to answer your questions I should say that if MS
SQL Server is working well for you then stick with it. You have not
mentioned any valid reason WHY you want to use MongoDB except the fact
that you learnt about it as a document oriented db. Moreover I see
that you have almost the same set of meta-data you are capturing for
each camera i.e. your schema is dynamic.
to tell if MongoDB is good for holding such data, which eventually will be queried against time ranges (e.g. retrieve all images of a particular camera between a specified hour)? Any suggestions about Document Based schema design for my case?
MongoDB being a document oriented db, is good at querying within an aggregate (you call it document). Since you already are storing each camera's data in its own table, in MongoDB you will have a separate collection created for each camera. Here is how you perform date range queries.
What should be the specs of server (CPU, RAM, Disk)? any suggestion?
All NoSQL data bases are built to scale-out on commodity hardware. But by the way you have asked the question, you might be thinking of improving performance by scaling-up. You can start with a reasonable machine and as the load increases, you can keep adding more servers (scaling-out). You no need to plan and buy a high end server.
Should i consider Sharding/Replication for this scenario (while considering the performance in writing to synch replica sets)?
MongoDB locks the entire db for a single write (but yields for other operations) and is meant for systems which have more reads than writes. So this depends upon how your system is. There are multiple ways of sharding and should be domain specific. A generic answer is not possible. However some examples can be given like sharding by geography, by branches etc.
Also read A plain english introduction to CAP Theorem
Updated with answer to the comment on sharding
According to their documentation, You should consider deploying a sharded cluster, if:
your data set approaches or exceeds the storage capacity of a single node in your system.
the size of your system’s active working set will soon exceed the capacity of the maximum amount of RAM for your system.
your system has a large amount of write activity, a single MongoDB instance cannot write data fast enough to meet demand, and all other
approaches have not reduced contention.
So based upon the last point yes. The auto-sharding feature is built to scale writes. In that case, you have a write lock per shard, not per database. But mine is a theoretical answer. I suggest you take consultation from 10gen.com group.
to tell if MongoDB is good for holding such data, which eventually
will be queried against time ranges (e.g. retrieve all images of a
particular camera between a specified hour)?
This quiestion is too subjective for me to answer. From personal experience with numerous SQL solutions (ironically not MS SQL) I would say they are both equally as good, if done right.
Also:
What should be the specs of server (CPU, RAM, Disk)? any suggestion?
Depends on too many variables that only you know, however a small cluster of commodity hardware works quite well. I cannot really give a factual response to this question and it will come down to your testing.
As for a schema I would go for a document of the structure:
{
_id: {},
camera_name: "my awesome camera",
images: [
{
url: "http://I_like_S3_here.amazons3.com/my_image.png" ,
// All your other fields per image
}
]
}
This should be quite easy to mantain and update so long as you are not embedding much deeper since then it could become a bit of pain, however, that depends upon your queries.
Not only that but this should be good for sharding since you have all the data you need in one document, if you were to shard on _id you could probably get the perfect setup here.
Should i consider Sharding/Replication for this scenario (while considering the performance in writing to synch replica sets)?
Possibly, many people assume they need to shard when in reality they just need to be more intelligent in how they design the database. MongoDB is very free form so there are a lot of ways to do it wrong, but that being said, there are also a lot of ways of dong it right. I personally would keep sharding in mind. Replication can be very useful too.
Are there any benefits of using multiple databases on same machine, so that one database will hold images of current day for all cameras, and the second one will be used to archive previous day images?
Even though MongoDBs write lock is on DB level (currently) I would say: No. The right document structure and the right sharding/replication (if needed) should be able to handle this in a single document based collection(s) under a single DB. Not only that but you can direct writes and reads within a cluster to certain servers so as to create a concurrency situation between certain machines in your cluster. I would promote the correct usage of MongoDBs concurrency features over DB separation.
Edit
After reading the question again I omitted from my solution that you are inserting 80k+ images for each camera a day. As such instead of the embedded option I would actually make a row per image in a collection called images and then a camera collection and query the two like you would in SQL.
Sharding the images collection should be just as easy on camera_id.
Also make sure you take you working set into consideration with your server.
to tell if MongoDB is good for holding such data, which eventually
will be queried against time ranges (e.g. retrieve all images of a
particular camera between a specified hour)? Any suggestions about
Document Based schema design for my case?
MongoDB can do this. For better performance, you can set an index on your time field.
What should be the specs of server (CPU, RAM, Disk)? any suggestion?
I think RAM and Disk would be important.
If you don't want to do sharding to scale out, you should consider a larger size of disk so you can store all your data in it.
Your hot data should can fit into your RAM. If not, then you should consider a larger RAM because the performance of MongoDB mainly depends on RAM.
Should i consider Sharding/Replication for this scenario (while
considering the performance in writing to synch replica sets)?
I don't know many cameras do you have, even 1000 inserts/second with total 1000 cameras should still be easy to MongoDB. If you are concerning insert performance, I don't think you need to do sharding(Except the data size are too big that you have to separate them into several machines).
Another problem is the read frequency of your application. It it is very high, then you can consider sharding or replication here.
And you can use (timestamp + camera_id) as your sharding key if your query only on one camera in a time range.
Are there any benefits of using multiple databases on same machine, so
that one database will hold images of current day for all cameras, and
the second one will be used to archive previous day images?
You can separate the table into two collections(archive and current). And set index only on archive if you only query date on archive. Without the overhead of index creation, the current collection should benefit with insert.
And you can write a daily program to dump the current data into archive.

web application receiving millions of requests and leads to generating millions of row inserts per 30 seconds in SQL Server 2008

I am currently addressing a situation where our web application receives at least a Million requests per 30 seconds. So these requests will lead to generating 3-5 Million row inserts between 5 tables. This is pretty heavy load to handle. Currently we are using multi threading to handle this situation (which is a bit faster but unable to get a better CPU throughput). However the load will definitely increase in future and we will have to account for that too. After 6 months from now we are looking at double the load size we are currently receiving and I am currently looking at a possible new solution that is scalable and should be easy enough to accommodate any further increase to this load.
Currently with multi threading we are making the whole debugging scenario quite complicated and sometimes we are having problem with tracing issues.
FYI we are already utilizing the SQL Builk Insert/Copy that is mentioned in this previous post
Sql server 2008 - performance tuning features for insert large amount of data
However I am looking for a more capable solution (which I think there should be one) that will address this situation.
Note: I am not looking for any code snippets or code examples. I am just looking for a big picture of a concept that I could possibly use and I am sure that I can take that further to an elegant solution :)
Also the solution should have a better utilization of the threads and processes. And I do not want my threads/processes to even wait to execute something because of some other resource.
Any suggestions will be deeply appreciated.
Update: Not every request will lead to an insert...however most of them will lead to some sql operation. The appliciation performs different types of transactions and these will lead to a lot of bulk sql operations. I am more concerned towards inserts and updates.
and these operations need not be real time there can be a bit lag...however processing them real time will be much helpful.
I think your problem looks more towards getting a better CPU throughput which will lead to a better performance. So I would probably look at something like an Asynchronous Processing where in a thread will never sit idle and you will probably have to maintain a queue in the form of a linked list or any other data structure that will suit your programming model.
The way this would work is your threads will try to perform a given job immediately and if there is anything that would stop them from doing it then they will push that job into the queue and these pushed items will be processed based on how it stores the items in the container/queue.
In your case since you are already using bulk sql operations you should be good to go with this strategy.
lemme know if this helps you.
Can you partition the database so that the inserts are spread around? How is this data used after insert? Is there a natural partion to the data by client or geography or some other factor?
Since you are using SQL server, I would suggest you get several of the books on high availability and high performance for SQL Server. The internals book muight help as well. Amazon has a bunch of these. This is a complex subject and requires too much depth for a simple answer on a bulletin board. But basically there are several keys to high performance design including hardware choices, partitioning, correct indexing, correct queries, etc. To do this effectively, you have to understand in depth what SQL Server does under the hood and how changes can make a big difference in performance.
Since you do not need to have your inserts/updates real time you might consider having two databases; one for reads and one for writes. Similar to having a OLTP db and an OLAP db:
Read Database:
Indexed as much as needed to maximize read performance.
Possibly denormalized if performance requires it.
Not always up to date.
Insert/Update database:
No indexes at all. This will help maximize insert/update performance
Try to normalize as much as possible.
Always up to date.
You would basically direct all insert/update actions to the Insert/Update db. You would then create a publication process that would move data over to the read database at certain time intervals. When I have seen this in the past the data is usually moved over on a nightly bases when few people will be using the site. There are a number of options for moving the data over, but I would start by looking at SSIS.
This will depend on your ability to do a few things:
have read data be up to one day out of date
complete your nightly Read db update process in a reasonable amount of time.

Design a database with a lot of new data

Im new to database design and need some guidance.
A lot of new data is inserted to my database throughout the day. (100k rows per day)
The data is never modified or deleted once it has been inserted.
How can I optimize this database for retrieval speed?
My ideas
Create two databases (and possible on different hard drives) and merge the two at night when traffic is low
Create some special indexes...
Your recommendation is highly appreciated.
UPDATE:
My database only has a single table.
100k/day is actually fairly low. 3M/month, 40M/year. You can store 10 years archive and not reach 1B rows.
The most important thing to choose in your design will be the clustered key(s). You need to make sure that they are narrow and can serve all the queries your application will normally use. Any query that will end up in table scan will completely trash your memory by fetching in the entire table. So, no surprises there, your driving factor in your design is the actual load you'll have: exactly what queries will you be running.
A common problem (more often neglected than not) with any high insert rate is that eventually every row inserted will have to be deleted. Not acknowledging this is a pipe dream. The proper strategy depends on many factors, but probably the best bet is on a sliding window partitioning scheme. See How to Implement an Automatic Sliding Window in a Partitioned Table. This cannot be some afterthought, the choice for how to remove data will permeate every aspect of your design and you better start making a strategy now.
The best tip I can give which all big sites use to speed up there website is:
CACHE CACHE CACHE
use redis/memcached to cache your data! Because memory is (blazingly)fast and disc I/O is expensive.
Queue writes
Also for extra performance you could queue up the writes in memory for a little while before flushing them to disc -> writting them to SQL database. Off course then you have the risk off losing data if you keep it in memory and your computer crashes or has power failure or something
Context missing
Also I don't think you gave us much context!
What I think is missing is:
architecture.
What kind of server are you having VPS/shared hosting.
What kind of Operating system does it have linux/windows/macosx
computer specifics like how much memory available, cpu etc.
a find your definition of data a bit vague. Could you not attach a diagram or something which explains your domain a little bit. For example something like
this using http://yuml.me/
Your requirements are way to general. For MS SQL server 100k (more or less "normal") records per days should not be a problem, if you have decent hardware. Obviously you want to write fast to the database, but you ask for optimization for retrieval performance. That does not match very well! ;-) Tuning a database is a special skill on its own. So you will never get the general answer you would like to have.

Practical size limitations for RDBMS

I am working on a project that must store very large datasets and associated reference data. I have never come across a project that required tables quite this large. I have proved that at least one development environment cannot cope at the database tier with the processing required by the complex queries against views that the application layer generates (views with multiple inner and outer joins, grouping, summing and averaging against tables with 90 million rows).
The RDBMS that I have tested against is DB2 on AIX. The dev environment that failed was loaded with 1/20th of the volume that will be processed in production. I am assured that the production hardware is superior to the dev and staging hardware but I just don't believe that it will cope with the sheer volume of data and complexity of queries.
Before the dev environment failed, it was taking in excess of 5 minutes to return a small dataset (several hundred rows) that was produced by a complex query (many joins, lots of grouping, summing and averaging) against the large tables.
My gut feeling is that the db architecture must change so that the aggregations currently provided by the views are performed as part of an off-peak batch process.
Now for my question. I am assured by people who claim to have experience of this sort of thing (which I do not) that my fears are unfounded. Are they? Can a modern RDBMS (SQL Server 2008, Oracle, DB2) cope with the volume and complexity I have described (given an appropriate amount of hardware) or are we in the realm of technologies like Google's BigTable?
I'm hoping for answers from folks who have actually had to work with this sort of volume at a non-theoretical level.
The nature of the data is financial transactions (dates, amounts, geographical locations, businesses) so almost all data types are represented. All the reference data is normalised, hence the multiple joins.
I work with a few SQL Server 2008 databases containing tables with rows numbering in the billions. The only real problems we ran into were those of disk space, backup times, etc. Queries were (and still are) always fast, generally in the < 1 sec range, never more than 15-30 secs even with heavy joins, aggregations and so on.
Relational database systems can definitely handle this kind of load, and if one server or disk starts to strain then most high-end databases have partitioning solutions.
You haven't mentioned anything in your question about how the data is indexed, and 9 times out of 10, when I hear complaints about SQL performance, inadequate/nonexistent indexing turns out to be the problem.
The very first thing you should always be doing when you see a slow query is pull up the execution plan. If you see any full index/table scans, row lookups, etc., that indicates inadequate indexing for your query, or a query that's written so as to be unable to take advantage of covering indexes. Inefficient joins (mainly nested loops) tend to be the second most common culprit and it's often possible to fix that with a query rewrite. But without being able to see the plan, this is all just speculation.
So the basic answer to your question is yes, relational database systems are completely capable of handling this scale, but if you want something more detailed/helpful then you might want to post an example schema / test script, or at least an execution plan for us to look over.
90 million rows should be about 90GB, thus your bottleneck is disk.
If you need these queries rarely, run them as is.
If you need these queries often, you have to split your data and precompute your gouping summing and averaging on the part of your data that doesn't change (or didn't change since last time).
For example if you process historical data for the last N years up to and including today, you could process it one month (or week, day) at a time and store the totals and averages somewhere. Then at query time you only need to reprocess period that includes today.
Some RDBMS give you some control over when views are updated (at select, at source change, offline), if your complicated grouping summing and averaging is in fact simple enough for the database to understand correctly, it could, in theory, update a few rows in the view at every insert/update/delete in your source tables in reasonable time.
It looks like you're calculating the same data over and over again from normalized data. One way to speed up processing in cases like this is to keep SQL with it's nice reporting and relationships and consistency and such, and use a OLAP Cube which is calculated every x amount of minutes. Basically you build a big table of denormalized data on a regular basis which allows quick lookups. The relational data is treated as the master, but the Cube allows quick precalcuated values to be retrieved from the database at any one point.
If that is only 1/20 of your data, you almost surely need to look into more scalable and efficient solutions, such as Google's Big Table. Have a look at NoSQL
I personally think that MongoDB is an awesome inbetween of NoSQL and RDMS. It isn't relational, but it provides a lot more features than a simple document store.
In dimensional (Kimball methodology) models in our data warehouse on SQL Server 2005, we regularly have fact tables with that many rows just in a single month partition.
Some things are instant and some things take a while, it depends on the operation and how many stars are being combined and what's going on.
The same models perform poorly on Teradata, but it is my understanding that if we re-model in 3NF, Teradata parallelization will work a lot better. The Teradata installation is many times more expensive than the SQL Server installation, so it just goes to show how much of a difference modeling and matching your data and processes to the underlying feature set matters.
Without knowing more about your data, and how it's currently modeled and what indexing choices you've made it's hard to say anything more.

real-time data warehouse for web access logs

We're thinking about putting up a data warehouse system to load with web access logs that our web servers generate. The idea is to load the data in real-time.
To the user we want to present a line graph of the data and enable the user to drill down using the dimensions.
The question is how to balance and design the system so that ;
(1) the data can be fetched and presented to the user in real-time (<2 seconds),
(2) data can be aggregated on per-hour and per-day basis, and
(2) as large amount of data can still be stored in the warehouse, and
Our current data-rate is roughly ~10 accesses per second which gives us ~800k rows per day. My simple tests with MySQL and a simple star schema shows that my quires starts to take longer than 2 seconds when we have more than 8 million rows.
Is it possible it get real-time query performance from a "simple" data warehouse like this,
and still have it store a lot of data (it would be nice to be able to never throw away any data)
Are there ways to aggregate the data into higher resolution tables?
I got a feeling that this isn't really a new question (i've googled quite a lot though). Could maybe someone give points to data warehouse solutions like this? One that comes to mind is Splunk.
Maybe I'm grasping for too much.
UPDATE
My schema looks like this;
dimensions:
client (ip-address)
server
url
facts;
timestamp (in seconds)
bytes transmitted
Seth's answer above is a very reasonable answer and I feel confident that if you invest in the appropriate knowledge and hardware, it has a high chance of success.
Mozilla does a lot of web service analytics. We keep track of details on an hourly basis and we use a commercial DB product, Vertica. It would work very well for this approach but since it is a proprietary commercial product, it has a different set of associated costs.
Another technology that you might want to investigate would be MongoDB. It is a document store database that has a few features that make it potentially a great fit for this use case.
Namely, the capped collections (do a search for mongodb capped collections for more info)
And the fast increment operation for things like keeping track of page views, hits, etc.
http://blog.mongodb.org/post/171353301/using-mongodb-for-real-time-analytics
Doesn't sound like it would be a problem. MySQL is very fast.
For storing logging data, use MyISAM tables -- they're much faster and well suited for web server logs. (I think InnoDB is the default for new installations these days - foreign keys and all the other features of InnoDB aren't necessary for the log tables). You might also consider using merge tables - you can keep individual tables to a manageable size while still being able to access them all as one big table.
If you're still not able to keep up, then get yourself more memory, faster disks, a RAID, or a faster system, in that order.
Also: Never throwing away data is probably a bad idea. If each line is about 200 bytes long, you're talking about a minimum of 50 GB per year, just for the raw logging data. Multiply by at least two if you have indexes. Multiply again by (at least) two for backups.
You can keep it all if you want, but in my opinion you should consider storing the raw data for a few weeks and the aggregated data for a few years. For anything older, just store the reports. (That is, unless you are required by law to keep around. Even then, it probably won't be for more than 3-4 years).
Also, look into partitioning, especially if your queries mostly access latest data; you could -- for example -- set-up weekly partitions of ~5.5M rows.
If aggregating per-day and per hour, consider having date and time dimensions -- you did not list them so I assume you do not use them. The idea is not to have any functions in a query, like HOUR(myTimestamp) or DATE(myTimestamp). The date dimension should be partitioned the same way as fact tables.
With this in place, the query optimizer can use partition pruning, so the total size of tables does not influence the query response as before.
This has gotten to be a fairly common data warehousing application. I've run one for years that supported 20-100 million rows a day with 0.1 second response time (from database), over a second from web server. This isn't even on a huge server.
Your data volumes aren't too large, so I wouldn't think you'd need very expensive hardware. But I'd still go multi-core, 64-bit with a lot of memory.
But you will want to mostly hit aggregate data rather than detail data - especially for time-series graphing over days, months, etc. Aggregate data can be either periodically created on your database through an asynchronous process, or in cases like this is typically works best if your ETL process that transforms your data creates the aggregate data. Note that the aggregate is typically just a group-by of your fact table.
As others have said - partitioning is a good idea when accessing detail data. But this is less critical for the aggregate data. Also, reliance on pre-created dimensional values is much better than on functions or stored procs. Both of these are typical data warehousing strategies.
Regarding the database - if it were me I'd try Postgresql rather than MySQL. The reason is primarily optimizer maturity: postgresql can better handle the kinds of queries you're likely to run. MySQL is more likely to get confused on five-way joins, go bottom up when you run a subselect, etc. And if this application is worth a lot, then I'd consider a commercial database like db2, oracle, sql server. Then you'd get additional features like query parallelism, automatic query rewrite against aggregate tables, additional optimizer sophistication, etc.