I use ProcessFull parameter for processing one of my dimension. First time processing took 45 min. But second time it takes an hour or even more.
Why second processing takes more time than first one?
This doesnt sound like normal SSAS behaviour. I would suspect some external factor.
Related
I am applying the VRP example of optaplanner with time windows and I get feasible solutions whenever I define time windows in a range of 24 hours (00:00 to 23:59). But I am needing:
Manage long trips, where I know that the duration between leaving the depot to the first visit, or durations between visits, will be more than 24 hours. So currently it does not give me workable solutions, because the TW format is in 24 hour format. It happens that when applying the scoring rule "arrivalAfterDueTime", always the "arrivalTime" is higher than the "dueTime", because the "dueTime" is in a range of (00:00 to 23:59) and the "arrivalTime" is the next day.
I have thought that I should take each TW of each Customer and add more TW to it, one for each day that is planned.
Example, if I am planning a trip for 3 days, then I would have 3 time windows in each Customer. Something like this: if Customer 1 is available from [08:00-10:00], then say it will also be available from [32:00-34:00] and [56:00-58:00] which are the equivalent of the same TW for the following days.
Likewise I handle the times with long, converted to milliseconds.
I don't know if this is the right way, my consultation would be more about some ideas to approach this constraint, maybe you have a similar problematic and any idea for me would be very appreciated.
Sorry for the wording, I am a Spanish speaker. Thank you.
Without having checked the example, handing multiple days shouldn't be complicated. It all depends on how you model your time variable.
For example, you could:
model the time stamps as a long value denoted as seconds since epoch. This is how most of the examples are model if I remember correctly. Note that this is not very human-readable, but is the fastest to compute with
you could use a time data type, e.g. LocalTime, this is a human-readable time format but will work in the 24-hour range and will be slower than using a primitive data type
you could use a date time data tpe, e.g LocalDateTime, this is also human-readable and will work in any time range and will also be slower than using a primitive data type.
I would strongly encourage to not simply map the current day or current hour to a zero value and start counting from there. So, in your example you denote the times as [32:00-34:00]. This makes it appear as you are using the current day midnight as the 0th hour and start counting from there. While you can do this it will affect debugging and maintainability of your code. That is just my general advice, you don't have to follow it.
What I would advise is to have your own domain models and map them to Optaplanner models where you use a long value for any time stamp that is denoted as seconds since epoch.
I've just started using the SentryOne Plan Explorer to help tune my SQL Server queries, and have a question, I can't seem to find an answer for. What is Duration?
I would think it's the total time it took for the query to run. However, every query I am testing goes much longer in real-time than what ends up showing under Duration.
Below is a screenshot of what I'm seeing. Watching the query run takes over 2 minutes, but the final duration ends up being .770?
Thanks for any insight!
This is the answer provided by SentryOne:
While a query is running, we show clock time on the status bar. However, at the end, we sum up the total duration, in milliseconds, as reported by the trace rows we collected. We subtract duration from any trace rows that are discarded (e.g. events that don't generate plans, like WAITFOR).
I want to collect statistics on traffic every 10 seconds and the only tool that I found is connection_state_remove event,
event connection_state_remove(c: connection)
{
SumStats::observe( "traffic", [$str="all"] [$num=c$orig$num_bytes_ip] );
}
how to deal with those connections that did not removed by the end of this period. How to get statistics from them?
The events you're processing are independent of the time interval at which the SumStats framework reports statistics. First, you need to define what exactly are the statistics you care about — for example, you may want to count the number of connections for which Bro completes processing in a given time interval. Second, you need to define the time interval (in your case, 10 seconds) and how to process the statistical observations in the SumStats framework. This latter part is missing in your snippet: you're only making an observation but not telling the framework what to do with it.
The examples in the SumStats documentation are very close to what you're looking for.
I am using sumo for traffic signal control, and want to optimize the phase to reduce some objectives. During the process, I use the traci module as an output of states in traffic junction. The confusing part is traci.lane.getWaitingTime.
I don't know how the waiting time is calculated and also after I use two detectors as an output to observe, I think it is too large.
Can someone explain how the waiting time is calculated in SUMO?
The waiting time essentially counts the number of seconds a vehicle has a speed of less than 0.1 m/s. In the case of traci.lane this means it is the number of (nearly) standing vehicles multiplied with the time step length (since traci.lane returns the values for the last step).
How accurate are the start-/stop-timestamps in batch-history?
I've noticed, that a batch runtime is declared with one minute in the history. The code executed by the batch includes a find-method and only if this returns false, further code is executed. The find-method itself runs nearly instantly.
I've added timestamps in code via info-logs and can see those in the history of the batch. one timestamp is at the very first line and another one at the very last line of code. the delta is 0.
So I'm asking, from what this time-delta (stop-start of history against timestamps in code) comes from?!
Is there any "overhead" or sth. which takes an amount of time everytime a batch is executed?
The timestamps in BatchJobHistory (Batch job history) are off by up to a minute.
The timestamps in BatchHistory (Show tasks) are pretty accurate (one second resolution).
The timestamps in BatchJobHistory represents when the batch was started and observed finished by the batch system. Due to implementation details this may differ by 60 seconds from the real execution times recorded in BatchHistory.
This is yet another reason why it is difficult to monitor the AX batch system.