I have a set of decimal numbers. I need to check if a specific bit is set in each of them. If the bit is set, I need to return 1, otherwise return 0.
I am looking for a simple and fast way to do that.
Say, for example, I am checking if the third bit is set. I can do (number AND (2^2)), it will return 4 if the bit is set, otherwise it will return 0. How do I make it to return 1 instead of 4?
Thank you!
if ((number AND (2^bitnumber) <> 0) then return 1 else return 0 end if
If you can change your return type to boolean then this is more elegant
return ((number AND (2^bitnumber)) <> 0)
While the division solution is a simple one, I would think a bit-shift operation would be more efficient. You'd have to test it to be sure, though. For instance, if you are using 1 based bit indexes, you could do this:
Dim oneOrZero As Integer = (k And 2 ^ (n - 1)) >> (n - 1)
(Where k is the number and n is the bit index). Of, if you are using 0 based bit indexes, you could just do this:
Dim oneOrZero As Integer = (k And 2 ^ n) >> n
Sorry, guys, I am too slow today.
To test a bit number "n" in a decimal number "k":
(k AND 2^(n-1))/(2^(n-1))
will return 1 if the bit is set, otherwise will return 0.
=====================================================
Hi again, guys!
I compared the performance of the three proposed solutions with zero-based indexes, and here are the results:
"bit-shift solution" - 8.31 seconds
"if...then solution" - 8.44 seconds
"division solution" - 9.41 seconds
The times are average of the four consecutive runs.
Surprisingly for me, the second solution outperformed the third one.
However, after I modified the "division solution" this way:
p = 2 ^ n : oneOrZero = (k And p) / p
it started to run in 7.48 seconds.
So, this is the fastest of the proposed solutions (despite of what Keith says :-).
Thanks everybody for the help!
I really don't know if it can help anyone more than the above, but, here we go.
When I need to fast check a bit in number I compare the decimal-value of this bit directly.
I mean, if I would need to see of the 6th bit is on (32), I check its decimal value, like this:
if x and 32 = 32 then "the bit is ON"
Try for instance check 38 with 32, 4 and 2... and the other bits.
You will see only the actual bits turned on.
I hope it can help.
Yes! Simply use a bit mask. I enumerate the bits, then AND the number with the bit value. Very little math on the PC side as it uses lookup tables instead. The AND basically shuts off all the other bits except the one you are interested in. Then you check it against itself to see if it's on/off.
Enum validate
bit1 = 1
bit2 = 2
bit3 = 4
bit4 = 8
bit5 = 16
bit6 = 32
bit7 = 64
bit8 = 128
End Enum
If num And validate.bit3 = validate.bit3 Then true
Related
I have recently sat a computing exam in university in which we were never taught beforehand about the modulus function or any other check for odd/even function and we have no access to external documentation except our previous lecture notes. Is it possible to do this without these and how?
Bitwise AND (&)
Extract the last bit of the number using the bitwise AND operator. If the last bit is 1, then it's odd, else it's even. This is the simplest and most efficient way of testing it. Examples in some languages:
C / C++ / C#
bool is_even(int value) {
return (value & 1) == 0;
}
Java
public static boolean is_even(int value) {
return (value & 1) == 0;
}
Python
def is_even(value):
return (value & 1) == 0
I assume this is only for integer numbers as the concept of odd/even eludes me for floating point values.
For these integer numbers, the check of the Least Significant Bit (LSB) as proposed by Rotem is the most straightforward method, but there are many other ways to accomplish that.
For example, you could use the integer division operation as a test. This is one of the most basic operation which is implemented in virtually every platform. The result of an integer division is always another integer. For example:
>> x = int64( 13 ) ;
>> x / 2
ans =
7
Here I cast the value 13 as a int64 to make sure MATLAB treats the number as an integer instead of double data type.
Also here the result is actually rounded towards infinity to the next integral value. This is MATLAB specific implementation, other platform might round down but it does not matter for us as the only behavior we look for is the rounding, whichever way it goes. The rounding allow us to define the following behavior:
If a number is even: Dividing it by 2 will produce an exact result, such that if we multiply this result by 2, we obtain the original number.
If a number is odd: Dividing it by 2 will result in a rounded result, such that multiplying it by 2 will yield a different number than the original input.
Now you have the logic worked out, the code is pretty straightforward:
%% sample input
x = int64(42) ;
y = int64(43) ;
%% define the checking function
% uses only multiplication and division operator, no high level function
is_even = #(x) int64(x) == (int64(x)/2)*2 ;
And obvisouly, this will yield:
>> is_even(x)
ans =
1
>> is_even(y)
ans =
0
I found out from a fellow student how to solve this simplistically with maths instead of functions.
Using (-1)^n :
If n is odd then the outcome is -1
If n is even then the outcome is 1
This is some pretty out-of-the-box thinking, but it would be the only way to solve this without previous knowledge of complex functions including mod.
I was following 'A tour of GO` on http://tour.golang.org.
The table 15 has some code that I cannot understand. It defines two constants with the following syntax:
const (
Big = 1<<100
Small = Big>>99
)
And it's not clear at all to me what it means. I tried to modify the code and run it with different values, to record the change, but I was not able to understand what is going on there.
Then, it uses that operator again on table 24. It defines a variable with the following syntax:
MaxInt uint64 = 1<<64 - 1
And when it prints the variable, it prints:
uint64(18446744073709551615)
Where uint64 is the type. But I can't understand where 18446744073709551615 comes from.
They are Go's bitwise shift operators.
Here's a good explanation of how they work for C (they work in the same way in several languages).
Basically 1<<64 - 1 corresponds to 2^64 -1, = 18446744073709551615.
Think of it this way. In decimal if you start from 001 (which is 10^0) and then shift the 1 to the left, you end up with 010, which is 10^1. If you shift it again you end with 100, which is 10^2. So shifting to the left is equivalent to multiplying by 10 as many times as the times you shift.
In binary it's the same thing, but in base 2, so 1<<64 means multiplying by 2 64 times (i.e. 2 ^ 64).
That's the same as in all languages of the C family : a bit shift.
See http://en.wikipedia.org/wiki/Bitwise_operation#Bit_shifts
This operation is commonly used to multiply or divide an unsigned integer by powers of 2 :
b := a >> 1 // divides by 2
1<<100 is simply 2^100 (that's Big).
1<<64-1 is 2⁶⁴-1, and that's the biggest integer you can represent in 64 bits (by the way you can't represent 1<<64 as a 64 bits int and the point of table 15 is to demonstrate that you can have it in numerical constants anyway in Go).
The >> and << are logical shift operations. You can see more about those here:
http://en.wikipedia.org/wiki/Logical_shift
Also, you can check all the Go operators in their webpage
It's a logical shift:
every bit in the operand is simply moved a given number of bit
positions, and the vacant bit-positions are filled in, usually with
zeros
Go Operators:
<< left shift integer << unsigned integer
>> right shift integer >> unsigned integer
I have been reading about bit operators in Objective-C in Kochan's book, "Programming in Objective-C".
I am VERY confused about this part, although I have really understood most everything else presented to me thus far.
Here is a quote from the book:
The Bitwise AND Operator
Bitwise ANDing is frequently used for masking operations. That is, this operator can be used easily to set specific bits of a data item to 0. For example, the statement
w3 = w1 & 3;
assigns to w3 the value of w1 bitwise ANDed with the constant 3. This has the same ffect of setting all the bits in w, other than the rightmost two bits to 0 and preserving the rightmost two bits from w1.
As with all binary arithmetic operators in C, the binary bit operators can also be used as assignment operators by adding an equal sign. The statement
word &= 15;
therefore performs the same function as the following:
word = word & 15;
Additionally, it has the effect of setting all but the rightmost four bits of word to 0. When using constants in performing bitwise operations, it is usually more convenient to express the constants in either octal or hexadecimal notation.
OK, so that is what I'm trying to understand. Now, I'm extremely confused with pretty much this entire concept and I am just looking for a little clarification if anyone is willing to help me out on that.
When the book references "setting all the bits" now, all of the bits.. What exactly is a bit. Isn't that just a 0 or 1 in 2nd base, in other words, binary?
If so, why, in the first example, are all of the bits except the "rightmost 2" to 0? Is it 2 because it's 3 - 1, taking 3 from our constant?
Thanks!
Numbers can be expressed in binary like this:
3 = 000011
5 = 000101
10 = 001010
...etc. I'm going to assume you're familiar with binary.
Bitwise AND means to take two numbers, line them up on top of each other, and create a new number that has a 1 where both numbers have a 1 (everything else is 0).
For example:
3 => 00011
& 5 => 00101
------ -------
1 00001
Bitwise OR means to take two numbers, line them up on top of each other, and create a new number that has a 1 where either number has a 1 (everything else is 0).
For example:
3 => 00011
| 5 => 00101
------ -------
7 00111
Bitwise XOR (exclusive OR) means to take two numbers, line them up on top of each other, and create a new number that has a 1 where either number has a 1 AND the other number has a 0 (everything else is 0).
For example:
3 => 00011
^ 5 => 00101
------ -------
6 00110
Bitwise NOR (Not OR) means to take the Bitwise OR of two numbers, and then reverse everything (where there was a 0, there's now a 1, where there was a 1, there's now a 0).
Bitwise NAND (Not AND) means to take the Bitwise AND of two numbers, and then reverse everything (where there was a 0, there's now a 1, where there was a 1, there's now a 0).
Continuing: why does word &= 15 set all but the 4 rightmost bits to 0? You should be able to figure it out now...
n => abcdefghjikl
& 15 => 000000001111
------ --------------
? 00000000jikl
(0 AND a = 0, 0 AND b = 0, ... j AND 1 = j, i AND 1 = i, ...)
How is this useful? In many languages, we use things called "bitmasks". A bitmask is essentially a number that represents a whole bunch of smaller numbers combined together. We can combine numbers together using OR, and pull them apart using AND. For example:
int MagicMap = 1;
int MagicWand = 2;
int MagicHat = 4;
If I only have the map and the hat, I can express that as myInventoryBitmask = (MagicMap | MagicHat) and the result is my bitmask. If I don't have anything, then my bitmask is 0. If I want to see if I have my wand, then I can do:
int hasWand = (myInventoryBitmask & MagicWand);
if (hasWand > 0) {
printf("I have a wand\n");
} else {
printf("I don't have a wand\n");
}
Get it?
EDIT: more stuff
You'll also come across the "bitshift" operator: << and >>. This just means "shift everything left n bits" or "shift everything right n bits".
In other words:
1 << 3 = 0001 << 3 = 0001000 = 8
And:
8 >> 2 = 01000 >> 2 = 010 = 2
"Bit" is short for "binary digit". And yes, it's a 0 or 1. There are almost always 8 in a byte, and they're written kinda like decimal numbers are -- with the most significant digit on the left, and the least significant on the right.
In your example, w1 & 3 masks everything but the two least significant (rightmost) digits because 3, in binary, is 00000011. (2 + 1) The AND operation returns 0 if either bit being ANDed is 0, so everything but the last two bits are automatically 0.
w1 = ????...??ab
3 = 0000...0011
--------------------
& = 0000...00ab
0 & any bit N = 0
1 & any bit N = N
So, anything bitwise anded with 3 has all their bits except the last two set to 0. The last two bits, a and b in this case, are preserved.
#cHao & all: No! Bits are not numbers. They’re not zero or one!
Well, 0 and 1 are possible and valid interpretations. Zero and one is the typical interpretation.
But a bit is only a thing, representing a simple alternative. It says “it is” or “it is not”. It doesn’t say anything about the thing, the „it“, itself. It doesn’t tell, what thing it is.
In most cases this won’t bother you. You can take them for numbers (or parts, digits, of numbers) as you (or the combination of programming languages, cpu and other hardware, you know as being “typical”) usaly do – and maybe you’ll never have trouble with them.
But there is no principal problem if you switch the meaning of “0“ and “1”. Ok, if doing this while programming assembler, you’ll find it a bit problematic as some mnemonics will do other logic then they tell you with their names, numbers will be negated and such things.
Have a look at http://webdocs.cs.ualberta.ca/~amaral/courses/329/webslides/Topic2-DeMorganLaws/sld017.htm if you want.
Greetings
I know the modulus (%) operator calculates the remainder of a division. How can I identify a situation where I would need to use the modulus operator?
I know I can use the modulus operator to see whether a number is even or odd and prime or composite, but that's about it. I don't often think in terms of remainders. I'm sure the modulus operator is useful, and I would like to learn to take advantage of it.
I just have problems identifying where the modulus operator is applicable. In various programming situations, it is difficult for me to see a problem and realize "Hey! The remainder of division would work here!".
Imagine that you have an elapsed time in seconds and you want to convert this to hours, minutes, and seconds:
h = s / 3600;
m = (s / 60) % 60;
s = s % 60;
0 % 3 = 0;
1 % 3 = 1;
2 % 3 = 2;
3 % 3 = 0;
Did you see what it did? At the last step it went back to zero. This could be used in situations like:
To check if N is divisible by M (for example, odd or even)
or
N is a multiple of M.
To put a cap of a particular value. In this case 3.
To get the last M digits of a number -> N % (10^M).
I use it for progress bars and the like that mark progress through a big loop. The progress is only reported every nth time through the loop, or when count%n == 0.
I've used it when restricting a number to a certain multiple:
temp = x - (x % 10); //Restrict x to being a multiple of 10
Wrapping values (like a clock).
Provide finite fields to symmetric key algorithms.
Bitwise operations.
And so on.
One use case I saw recently was when you need to reverse a number. So that 123456 becomes 654321 for example.
int number = 123456;
int reversed = 0;
while ( number > 0 ) {
# The modulus here retrieves the last digit in the specified number
# In the first iteration of this loop it's going to be 6, then 5, ...
# We are multiplying reversed by 10 first, to move the number one decimal place to the left.
# For example, if we are at the second iteration of this loop,
# reversed gonna be 6, so 6 * 10 + 12345 % 10 => 60 + 5
reversed = reversed * 10 + number % 10;
number = number / 10;
}
Example. You have message of X bytes, but in your protocol maximum size is Y and Y < X. Try to write small app that splits message into packets and you will run into mod :)
There are many instances where it is useful.
If you need to restrict a number to be within a certain range you can use mod. For example, to generate a random number between 0 and 99 you might say:
num = MyRandFunction() % 100;
Any time you have division and want to express the remainder other than in decimal, the mod operator is appropriate. Things that come to mind are generally when you want to do something human-readable with the remainder. Listing how many items you could put into buckets and saying "5 left over" is good.
Also, if you're ever in a situation where you may be accruing rounding errors, modulo division is good. If you're dividing by 3 quite often, for example, you don't want to be passing .33333 around as the remainder. Passing the remainder and divisor (i.e. the fraction) is appropriate.
As #jweyrich says, wrapping values. I've found mod very handy when I have a finite list and I want to iterate over it in a loop - like a fixed list of colors for some UI elements, like chart series, where I want all the series to be different, to the extent possible, but when I've run out of colors, just to start over at the beginning. This can also be used with, say, patterns, so that the second time red comes around, it's dashed; the third time, dotted, etc. - but mod is just used to get red, green, blue, red, green, blue, forever.
Calculation of prime numbers
The modulo can be useful to convert and split total minutes to "hours and minutes":
hours = minutes / 60
minutes_left = minutes % 60
In the hours bit we need to strip the decimal portion and that will depend on the language you are using.
We can then rearrange the output accordingly.
Converting linear data structure to matrix structure:
where a is index of linear data, and b is number of items per row:
row = a/b
column = a mod b
Note above is simplified logic: a must be offset -1 before dividing & the result must be normalized +1.
Example: (3 rows of 4)
1 2 3 4
5 6 7 8
9 10 11 12
(7 - 1)/4 + 1 = 2
7 is in row 2
(7 - 1) mod 4 + 1 = 3
7 is in column 3
Another common use of modulus: hashing a number by place. Suppose you wanted to store year & month in a six digit number 195810. month = 195810 mod 100 all digits 3rd from right are divisible by 100 so the remainder is the 2 rightmost digits in this case the month is 10. To extract the year 195810 / 100 yields 1958.
Modulus is also very useful if for some crazy reason you need to do integer division and get a decimal out, and you can't convert the integer into a number that supports decimal division, or if you need to return a fraction instead of a decimal.
I'll be using % as the modulus operator
For example
2/4 = 0
where doing this
2/4 = 0 and 2 % 4 = 2
So you can be really crazy and let's say that you want to allow the user to input a numerator and a divisor, and then show them the result as a whole number, and then a fractional number.
whole Number = numerator/divisor
fractionNumerator = numerator % divisor
fractionDenominator = divisor
Another case where modulus division is useful is if you are increasing or decreasing a number and you want to contain the number to a certain range of number, but when you get to the top or bottom you don't want to just stop. You want to loop up to the bottom or top of the list respectively.
Imagine a function where you are looping through an array.
Function increase Or Decrease(variable As Integer) As Void
n = (n + variable) % (listString.maxIndex + 1)
Print listString[n]
End Function
The reason that it is n = (n + variable) % (listString.maxIndex + 1) is to allow for the max index to be accounted.
Those are just a few of the things that I have had to use modulus for in my programming of not just desktop applications, but in robotics and simulation environments.
Computing the greatest common divisor
Determining if a number is a palindrome
Determining if a number consists of only ...
Determining how many ... a number consists of...
My favorite use is for iteration.
Say you have a counter you are incrementing and want to then grab from a known list a corresponding items, but you only have n items to choose from and you want to repeat a cycle.
var indexFromB = (counter-1)%n+1;
Results (counter=indexFromB) given n=3:
`1=1`
`2=2`
`3=3`
`4=1`
`5=2`
`6=3`
...
Best use of modulus operator I have seen so for is to check if the Array we have is a rotated version of original array.
A = [1,2,3,4,5,6]
B = [5,6,1,2,3,4]
Now how to check if B is rotated version of A ?
Step 1: If A's length is not same as B's length then for sure its not a rotated version.
Step 2: Check the index of first element of A in B. Here first element of A is 1. And its index in B is 2(assuming your programming language has zero based index).
lets store that index in variable "Key"
Step 3: Now how to check that if B is rotated version of A how ??
This is where modulus function rocks :
for (int i = 0; i< A.length; i++)
{
// here modulus function would check the proper order. Key here is 2 which we recieved from Step 2
int j = [Key+i]%A.length;
if (A[i] != B[j])
{
return false;
}
}
return true;
It's an easy way to tell if a number is even or odd. Just do # mod 2, if it is 0 it is even, 1 it is odd.
Often, in a loop, you want to do something every k'th iteration, where k is 0 < k < n, assuming 0 is the start index and n is the length of the loop.
So, you'd do something like:
int k = 5;
int n = 50;
for(int i = 0;i < n;++i)
{
if(i % k == 0) // true at 0, 5, 10, 15..
{
// do something
}
}
Or, you want to keep something whitin a certain bound. Remember, when you take an arbitrary number mod something, it must produce a value between 0 and that number - 1.
int x = n / 3; // <-- make this faster
// for instance
int a = n * 3; // <-- normal integer multiplication
int b = (n << 1) + n; // <-- potentially faster multiplication
The guy who said "leave it to the compiler" was right, but I don't have the "reputation" to mod him up or comment. I asked gcc to compile int test(int a) { return a / 3; } for an ix86 and then disassembled the output. Just for academic interest, what it's doing is roughly multiplying by 0x55555556 and then taking the top 32 bits of the 64 bit result of that. You can demonstrate this to yourself with eg:
$ ruby -e 'puts(60000 * 0x55555556 >> 32)'
20000
$ ruby -e 'puts(72 * 0x55555556 >> 32)'
24
$
The wikipedia page on Montgomery division is hard to read but fortunately the compiler guys have done it so you don't have to.
This is the fastest as the compiler will optimize it if it can depending on the output processor.
int a;
int b;
a = some value;
b = a / 3;
There is a faster way to do it if you know the ranges of the values, for example, if you are dividing a signed integer by 3 and you know the range of the value to be divided is 0 to 768, then you can multiply it by a factor and shift it to the left by a power of 2 to that factor divided by 3.
eg.
Range 0 -> 768
you could use shifting of 10 bits, which multiplying by 1024, you want to divide by 3 so your multiplier should be 1024 / 3 = 341,
so you can now use (x * 341) >> 10
(Make sure the shift is a signed shift if using signed integers), also make sure the shift is an actually shift and not a bit ROLL
This will effectively divide the value 3, and will run at about 1.6 times the speed as a natural divide by 3 on a standard x86 / x64 CPU.
Of course the only reason you can make this optimization when the compiler cant is because the compiler does not know the maximum range of X and therefore cannot make this determination, but you as the programmer can.
Sometime it may even be more beneficial to move the value into a larger value and then do the same thing, ie. if you have an int of full range you could make it an 64-bit value and then do the multiply and shift instead of dividing by 3.
I had to do this recently to speed up image processing, i needed to find the average of 3 color channels, each color channel with a byte range (0 - 255). red green and blue.
At first i just simply used:
avg = (r + g + b) / 3;
(So r + g + b has a maximum of 768 and a minimum of 0, because each channel is a byte 0 - 255)
After millions of iterations the entire operation took 36 milliseconds.
I changed the line to:
avg = (r + g + b) * 341 >> 10;
And that took it down to 22 milliseconds, its amazing what can be done with a little ingenuity.
This speed up occurred in C# even though I had optimisations turned on and was running the program natively without debugging info and not through the IDE.
See How To Divide By 3 for an extended discussion of more efficiently dividing by 3, focused on doing FPGA arithmetic operations.
Also relevant:
Optimizing integer divisions with Multiply Shift in C#
Depending on your platform and depending on your C compiler, a native solution like just using
y = x / 3
Can be fast or it can be awfully slow (even if division is done entirely in hardware, if it is done using a DIV instruction, this instruction is about 3 to 4 times slower than a multiplication on modern CPUs). Very good C compilers with optimization flags turned on may optimize this operation, but if you want to be sure, you are better off optimizing it yourself.
For optimization it is important to have integer numbers of a known size. In C int has no known size (it can vary by platform and compiler!), so you are better using C99 fixed-size integers. The code below assumes that you want to divide an unsigned 32-bit integer by three and that you C compiler knows about 64 bit integer numbers (NOTE: Even on a 32 bit CPU architecture most C compilers can handle 64 bit integers just fine):
static inline uint32_t divby3 (
uint32_t divideMe
) {
return (uint32_t)(((uint64_t)0xAAAAAAABULL * divideMe) >> 33);
}
As crazy as this might sound, but the method above indeed does divide by 3. All it needs for doing so is a single 64 bit multiplication and a shift (like I said, multiplications might be 3 to 4 times faster than divisions on your CPU). In a 64 bit application this code will be a lot faster than in a 32 bit application (in a 32 bit application multiplying two 64 bit numbers take 3 multiplications and 3 additions on 32 bit values) - however, it might be still faster than a division on a 32 bit machine.
On the other hand, if your compiler is a very good one and knows the trick how to optimize integer division by a constant (latest GCC does, I just checked), it will generate the code above anyway (GCC will create exactly this code for "/3" if you enable at least optimization level 1). For other compilers... you cannot rely or expect that it will use tricks like that, even though this method is very well documented and mentioned everywhere on the Internet.
Problem is that it only works for constant numbers, not for variable ones. You always need to know the magic number (here 0xAAAAAAAB) and the correct operations after the multiplication (shifts and/or additions in most cases) and both is different depending on the number you want to divide by and both take too much CPU time to calculate them on the fly (that would be slower than hardware division). However, it's easy for a compiler to calculate these during compile time (where one second more or less compile time plays hardly a role).
For 64 bit numbers:
uint64_t divBy3(uint64_t x)
{
return x*12297829382473034411ULL;
}
However this isn't the truncating integer division you might expect.
It works correctly if the number is already divisible by 3, but it returns a huge number if it isn't.
For example if you run it on for example 11, it returns 6148914691236517209. This looks like a garbage but it's in fact the correct answer: multiply it by 3 and you get back the 11!
If you are looking for the truncating division, then just use the / operator. I highly doubt you can get much faster than that.
Theory:
64 bit unsigned arithmetic is a modulo 2^64 arithmetic.
This means for each integer which is coprime with the 2^64 modulus (essentially all odd numbers) there exists a multiplicative inverse which you can use to multiply with instead of division. This magic number can be obtained by solving the 3*x + 2^64*y = 1 equation using the Extended Euclidean Algorithm.
What if you really don't want to multiply or divide? Here is is an approximation I just invented. It works because (x/3) = (x/4) + (x/12). But since (x/12) = (x/4) / 3 we just have to repeat the process until its good enough.
#include <stdio.h>
void main()
{
int n = 1000;
int a,b;
a = n >> 2;
b = (a >> 2);
a += b;
b = (b >> 2);
a += b;
b = (b >> 2);
a += b;
b = (b >> 2);
a += b;
printf("a=%d\n", a);
}
The result is 330. It could be made more accurate using b = ((b+2)>>2); to account for rounding.
If you are allowed to multiply, just pick a suitable approximation for (1/3), with a power-of-2 divisor. For example, n * (1/3) ~= n * 43 / 128 = (n * 43) >> 7.
This technique is most useful in Indiana.
I don't know if it's faster but if you want to use a bitwise operator to perform binary division you can use the shift and subtract method described at this page:
Set quotient to 0
Align leftmost digits in dividend and divisor
Repeat:
If that portion of the dividend above the divisor is greater than or equal to the divisor:
Then subtract divisor from that portion of the dividend and
Concatentate 1 to the right hand end of the quotient
Else concatentate 0 to the right hand end of the quotient
Shift the divisor one place right
Until dividend is less than the divisor:
quotient is correct, dividend is remainder
STOP
For really large integer division (e.g. numbers bigger than 64bit) you can represent your number as an int[] and perform division quite fast by taking two digits at a time and divide them by 3. The remainder will be part of the next two digits and so forth.
eg. 11004 / 3 you say
11/3 = 3, remaineder = 2 (from 11-3*3)
20/3 = 6, remainder = 2 (from 20-6*3)
20/3 = 6, remainder = 2 (from 20-6*3)
24/3 = 8, remainder = 0
hence the result 3668
internal static List<int> Div3(int[] a)
{
int remainder = 0;
var res = new List<int>();
for (int i = 0; i < a.Length; i++)
{
var val = remainder + a[i];
var div = val/3;
remainder = 10*(val%3);
if (div > 9)
{
res.Add(div/10);
res.Add(div%10);
}
else
res.Add(div);
}
if (res[0] == 0) res.RemoveAt(0);
return res;
}
If you really want to see this article on integer division, but it only has academic merit ... it would be an interesting application that actually needed to perform that benefited from that kind of trick.
Easy computation ... at most n iterations where n is your number of bits:
uint8_t divideby3(uint8_t x)
{
uint8_t answer =0;
do
{
x>>=1;
answer+=x;
x=-x;
}while(x);
return answer;
}
A lookup table approach would also be faster in some architectures.
uint8_t DivBy3LU(uint8_t u8Operand)
{
uint8_t ai8Div3 = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, ....];
return ai8Div3[u8Operand];
}