NSClassFromString() security concerns - objective-c

I'm trying to create a factory class structure where my abstract base class, PDObject, instantiates an instance the proper subclass based on information passed to it in an NSDictionary. Here's my init method for PDObject:
- (id)initWithDictionary:(NSDictionary *)dictionary inEnvironment:(PDEnvironment *)environment {
NSString *className = [dictionary objectForKey:#"objectType"];
if (className) {
Class objectClass = NSClassFromString(className);
if ([objectClass isSubclassOfClass:[PDObject class]]) {
self = [[objectClass alloc] initWithDictionary:dictionary inEnvironment:environment];
} else {
NSLog(#"tried to instantiate an object of the wrong object type");
self = nil;
}
} else {
NSLog(#"tried to instantiate an object without an object type");
}
return self;
}
I'm wondering if anyone knows of any security concerns with this pattern. I'm worried that something malicious could be passed in in the dictionary and instantiate something unexpected. I have a check to make sure that it is a proper subclass of PDObject. Is there anything I should be concerned about here, or am I just being paranoid?

It is unlikely to be a security hole, but passing potentially random strings to runtime functions isn't really something the runtime is hardened against. The risk isn't instantiating random classes, but causing the app to potentially crash or execute random code.
In general, I wouldn't go beyond minimal effort. To that ends, I would suggest using NSScanner to scan the class name to see if it has any characters that are obviously out of bounds. I would think scanning for alphanumericCharacterSet would be sufficient.

Dynamism is good and I don't see anything particularly risky here. If you want to avoid crashes, you can check for the particular object a. not being nil (just in case) and b. responding to any selector you want to send it. Also note that whichever kind of protection you use, who wants to mock with your app will always be able to do so using library interposition (meet the infamous DYLD_INSERT_LIBRARIES environment variable) and the Objective-C runtime.

Related

Is it safe to store id into real class pointer before checking type

I have a lot of code that looks like this:
id myObjectRaw = getObject();
if(![myObjectRaw isKindOfClass:[MyClass class]]) return nil;
MyClass * myObject = myObjectRaw;
...
Here id getObject() can return several kinds of object. However the above code feels clunky to me. Is it safe to write this?
MyClass * myObject = getObject();
if(![myObject isKindOfClass:[MyClass class]]) return nil;
...
The compiler doesn't complain, but I'm not sure that I'm not treading on undefined behaviuor if getObject returns an object not related to MyClass.
(And no, I can't use a super class, or interface, since I dont actually have control over all the classes that get returned.)
You can do it. Nothing undefined. The only danger is that if the type is wrong and you forget to check the type, it may crash due to unrecognized selector exception.
In compiled code, id, MyClass * and NSString * have no difference, they just a pointer to a ObjC object.
Both versions will work. The first feels clunky, but there are problems with the second one as well: Putting something into a variable of a specific type implies knowledge of its type, and checking the class of something that seems to be known already looks redundant. If someone (it might be you) looks at that code next year, he may find the class check superfluous and remove it.
I've been in a similar situation, and I went with a helper method that gives a properly typed result or nil, i.e.
-(Rectangle)getRectangleObject {
id data = getObject();
if ([data isKindOfClass:[Rectangle class]]) return data;
return nil;
}
This simplifies code and communicates the intention clearly.
If you need several different type checks, you can go with several methods, or pass the class to this helper method.
As long as all types of returned objects conform to NSObject protocol (Classes that inherit from NSObject class do) it is safe to use isKindOfClass: method.
So make sure getObject() method only returns objective-c classes that inherit from NSObject
EDIT
While compiler is fine with it, as #Eiko mentions someone reading the code will probably think the isKindOfClass: check is unnecessary. It is better to use the former code to let the reader know that getObject() might also return other types of objects.
When you use id myObjectRaw you are NOT defining what kind of object myObjectRaw is, thus the compiler won't know if MyClass * myObject = getObject(); is a valid operation or not. THe compiler assumes you know what you are doing. If getObject() returns an object that is different than MyClass or it's not a subclass of it your app may crash. This is a runtime error.
If getObject() returns different objects, you should be expecting at least one object of the kind of objects that can be returned. If need to handle different objects, you can always use if-else-if instructions like:
id myObjectRaw = getObject();
if([myObjectRaw isKindOfClass:[MyClass1 class]])
{
MyClass1 objectClass1 = myObjectRaw;
}
else if([myObjectRaw isKindOfClass[MyClass2 class]])
{
MyClass2 objectClass2 = myObjectRaw;
}
However, if the object returned is a MyClass2 object, and this class is a subclass of MyClass1 the first condition will be true. Therefore, the object will be saved as a MyClass1 object. If that's the case you need to establish priorities and put them accordingly in the nested if-else-if statement.

Using objc_msgSendSuper to invoke a class method

I was going through and replacing #synthesized(self) locks w/ this method
void _ThreadsafeInit(Class theClassToInit, void *volatile *theVariableItLivesIn, void(^InitBlock)(void))
{
//this is what super does :X
struct objc_super mySuper = {
.receiver = (id)theClassToInit,
.super_class = class_getSuperclass(theClassToInit)
};
id (*objc_superAllocTyped)(struct objc_super *, SEL, NSZone *) = (void *)&objc_msgSendSuper;
// id (*objc_superAllocTyped)(id objc_super, SEL, NSZone *) = (void *)&objc_msgSend;
do {
id temp = [(*objc_superAllocTyped)(&mySuper /*theClassToInit*/, #selector(allocWithZone:), NULL) init];//get superclass in case alloc is blocked in this class;
if(OSAtomicCompareAndSwapPtrBarrier(0x0, temp, theVariableItLivesIn)) { //atomic operation forces synchronization
if( InitBlock != NULL ) {
InitBlock(); //only the thread that succesfully set sharedInstance pointer gets here
}
break;
}
else
{
[temp release]; //any thread that fails to set sharedInstance needs to clean up after itself
}
} while (*theVariableItLivesIn == NULL);
}
which while a bit more verbose exhibits significantly better performance in non-contested cases
along with this little macro (excuse poor formatting, it's very simple). To allow the block to be declared after the initial nil check, looks to help LLVM keep the "already initialized" path extremely fast. That's the only one I care about.
#define ThreadsafeFastInit(theClassToInit, theVariableToStoreItIn, aVoidBlockToRunAfterInit) if( theVariableToStoreItIn == nil) { _ThreadsafeInitWithBlock(theClassToInit, (void *)&theVariableToStoreItIn, aVoidBlockToRunAfterInit); }
So initially implemented it using the commented out sections for objc_superAllocTyped (actually first using [theClassToInit allocWithZone:NULL], which was definitely the best approach :) ), which worked great until I realized that most of the singletons in the project had overridden allocWithZone to return the singleton method... infinite loop. So I figured using objc_msgSendSuper should sort it out quickly, but I get this error.
[51431:17c03] +[DataUtils allocWithZone:]: unrecognized selector sent to class 0x4f9584
The error doesn't seem to be related to the actual problem, as...
(lldb) po 0x4f9584
$1 = 5215620 DataUtils
(lldb) print (BOOL)[$1 respondsToSelector:#selector(allocWithZone:)]
(BOOL) $2 = YES
So I'm definitely missing something... I compared to assembly generated by a [super allocWithZone:NULL] method in an empty class... almost identical except for the functions called have different names (maybe just using different symbols, no idea, can't read it that well).
Any ideas? I can use class_getClassMethod on the superclass and call the IMP directly, but I'm trying to be reasonable in my abuse of the runtime :)
Alright, this wasn't actually that tricky once I recalled that the meta class contains all of the method information for a Class instance obtained via -[self class] or +[self] -> thanks http://www.cocoawithlove.com/2010/01/what-is-meta-class-in-objective-c.html
This error occurred because I was asking the runtime to look up the method in NSObject's set of instance methods, which obviously doesn't contain allocWithZone: . The mistake in the error log presumably originated because the receiver was a metaclass instance, and Apple has their interns implement error logs.
so while with a normal instance method call via objc_msgSendSuper, you would pass a metaclass instance as objc_super.super_class, to invoke a class method, the metaclass itself is needed (everything is one level up).
Example, and a diagram that helped me understand this - (http://www.sealiesoftware.com/blog/archive/2009/04/14/objc_explain_Classes_and_metaclasses.html)
struct objc_super mySuper;
mySuper.receiver = theClassToInit; //this is our receiver, no doubt about it
//either grab the super class and get its metaclass
mySuper.super_class = object_getClass( class_getSuperclass( theClassToInit ) );
//or grab the metaclass, and get its super class, this is the exact same object
mySuper.super_class = class_getSuperclass( object_getClass( theClassToInit ) );
Then the message can be resolved correctly. Makes perfect sense now that I started paying attention :P
Anyways, now that I found my mistake I feel like I've leveled up my Objc runtime understanding. I was also able to fix an architectural mistake made two years ago by someone I never met without having to modifying and re-test dozens of classes across 3 projects and 2 static libraries (God I love Objective-C). Replacing the #synchronized construct with a simple function call also halved the compiled code size of those methods. As a bonus, all our singleton accessors are now (more) threadsafe, because the performance cost for doing so is now negligible. Methods which naively re-fetched the singleton object multiple times (or in loops) have seen a huge speedup now that they don't have to acquire and release a mutex multiple times per invocation. All in all I'm very happy it all worked as I'd hoped.
I made a "normal" Objective-C method for this on a category of NSObject, which will work for both instance and Class objects to allow you to invoke a superclass's implementation of a message externally. Warning: This is only for fun, or unit tests, or swizzled methods, or maybe a really cool game.
#implementation NSObject (Convenience)
-(id)performSelector:(SEL)selector asClass:(Class)class
{
struct objc_super mySuper = {
.receiver = self,
.super_class = class_isMetaClass(object_getClass(self)) //check if we are an instance or Class
? object_getClass(class) //if we are a Class, we need to send our metaclass (our Class's Class)
: class //if we are an instance, we need to send our Class (which we already have)
};
id (*objc_superAllocTyped)(struct objc_super *, SEL) = (void *)&objc_msgSendSuper; //cast our pointer so the compiler can sort out the ABI
return (*objc_superAllocTyped)(&mySuper, selector);
}
so
[self performSelector:#selector(dealloc) asClass:[self superclass]];
would be equivalent to
[super dealloc];
Carry on runtime explorers! Don't let the naysayers drag you into their land of handwaving and black magik boxes, it's hard to make uncompromisingly awesome programs there*.
*Please enjoy the Objective-C runtime responsibly. Consult with your QA team for any bugs lasting more than four hours.

Objective-C & KeyValueCoding: How to avoid an exception with valueForKeyPath:?

I've got an object of type id and would like to know if it contains a value for a given keyPath:
[myObject valueForKeyPath:myKeyPath];
Now, I wrap it into a #try{ } #catch{} block to avoid exceptions when the given keypath isn't found. Is there a nicer way to do this? Check if the given keypath exists without handling exceptions?
Thanks a lot,
Stefan
You could try this:
if ([myObject respondsToSelector:NSSelectorFromString(myKeyPath)])
{
}
However, that may not correspond to the getter you have, especially if it is a boolean value. If this doesn't work for you, let me know and I'll write you up something using reflection.
For NSManagedObjects, an easy solution is to look at the object's entity description and see if there's an attribute with that key name. If there is, you can also take it to the next step and see what type of an attribute the value is.
Here's a simple method that given any NSManagedObject and any NSString as a key, will always return an NSString:
- (NSString *)valueOfItem:(NSManagedObject *)item asStringForKey:(NSString *)key {
NSEntityDescription *entity = [item entity];
NSDictionary *attributesByName = [entity attributesByName];
NSAttributeDescription *attribute = attributesByName[key];
if (!attribute) {
return #"---No Such Attribute Key---";
}
else if ([attribute attributeType] == NSUndefinedAttributeType) {
return #"---Undefined Attribute Type---";
}
else if ([attribute attributeType] == NSStringAttributeType) {
// return NSStrings as they are
return [item valueForKey:key];
}
else if ([attribute attributeType] < NSDateAttributeType) {
// this will be all of the NSNumber types
// return them as strings
return [[item valueForKey:key] stringValue];
}
// add more "else if" cases as desired for other types
else {
return #"---Unacceptable Attribute Type---";
}
}
If the key is invalid or the value can't be made into a string, the method returns an NSString error message (change those blocks to do whatever you want for those cases).
All of the NSNumber attribute types are returned as their stringValue representations. To handle other attribute types (e.g.: dates), simply add additional "else if" blocks. (see NSAttributeDescription Class Reference for more information).
If the object is a custom class of yours, you could override valueForUndefinedKey: on your object, to define what is returned when a keypath doesn't exist.
It should be possible to graft this behavior onto arbitrary classes reasonably simply. I present with confidence, but without warranty, the following code which you should be able to use to add a non-exception-throwing implementation of valueForUndefinedKey: to any class, with one, centralized line of code per class at app startup time. If you wanted to save even more code, you could make all the classes you wanted to have this behavior inherit from a common subclass of NSManagedObject and then apply this to that common class and all your subclasses would inherit the behavior. More details after, but here's the code:
Header (NSObject+ValueForUndefinedKeyAdding.h):
#interface NSObject (ValueForUndefinedKeyAdding)
+ (void)addCustomValueForUndefinedKeyImplementation: (IMP)handler;
#end
Implementation (NSObject+ValueForUndefinedKeyAdding.m):
#import "NSObject+ValueForUndefinedKeyAdding.h"
#import <objc/runtime.h>
#import <objc/message.h>
#implementation NSObject (ValueForUndefinedKeyAdding)
+ (void)addCustomValueForUndefinedKeyImplementation: (IMP)handler
{
Class clazz = self;
if (clazz == nil)
return;
if (clazz == [NSObject class] || clazz == [NSManagedObject class])
{
NSLog(#"Don't try to do this to %#; Really.", NSStringFromClass(clazz));
return;
}
SEL vfuk = #selector(valueForUndefinedKey:);
#synchronized([NSObject class])
{
Method nsoMethod = class_getInstanceMethod([NSObject class], vfuk);
Method nsmoMethod = class_getInstanceMethod([NSManagedObject class], vfuk);
Method origMethod = class_getInstanceMethod(clazz, vfuk);
if (origMethod != nsoMethod && origMethod != nsmoMethod)
{
NSLog(#"%# already has a custom %# implementation. Replacing that would likely break stuff.",
NSStringFromClass(clazz), NSStringFromSelector(vfuk));
return;
}
if(!class_addMethod(clazz, vfuk, handler, method_getTypeEncoding(nsoMethod)))
{
NSLog(#"Could not add valueForUndefinedKey: method to class: %#", NSStringFromClass(clazz));
}
}
}
#end
Then, in your AppDelegate class (or really anywhere, but it probably makes sense to put it somewhere central, so you know where to find it when you want to add or remove classes from the list) put this code which adds this functionality to classes of your choosing at startup time:
#import "MyAppDelegate.h"
#import "NSObject+ValueForUndefinedKeyAdding.h"
#import "MyOtherClass1.h"
#import "MyOtherClass2.h"
#import "MyOtherClass3.h"
static id ExceptionlessVFUKIMP(id self, SEL cmd, NSString* inKey)
{
NSLog(#"Not throwing an exception for undefined key: %# on instance of %#", inKey, [self class]);
return nil;
}
#implementation MyAppDelegate
+ (void)initialize
{
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
[MyOtherClass1 addCustomValueForUndefinedKeyImplementation: (IMP)ExceptionlessVFUKIMP];
[MyOtherClass2 addCustomValueForUndefinedKeyImplementation: (IMP)ExceptionlessVFUKIMP];
[MyOtherClass3 addCustomValueForUndefinedKeyImplementation: (IMP)ExceptionlessVFUKIMP];
});
}
// ... rest of app delegate class ...
#end
What I'm doing here is adding a custom implementation for valueForUndefinedKey: to the classes MyOtherClass1, 2 & 3. The example implementation I've provided just NSLogs and returns nil, but you can change the implementation to do whatever you want, by changing the code in ExceptionlessVFUKIMP. If you remove the NSLog, and just return nil, I suspect you'll get what you want, based on your question.
This code NEVER swizzles methods, it only adds one if it's not there. I've put in checks to prevent this from being used on classes that already have their own custom implementations of valueForUndefinedKey: because if someone put that method in their class, there's going to be an expectation that it will continue to get called. Also note that there may be AppKit code that EXPECTS the exceptions from the NSObject/NSManagedObject implementations to be thrown. (I don't know that for sure, but it's a possibility to consider.)
A few notes:
NSManagedObject provides a custom implementation for valueForUndefinedKey: Stepping through its assembly in the debugger, all it appears to do is throw roughly the same exception with a slightly different message. Based on that 5 minute debugger investigation, I feel like it ought to be safe to use this with NSManagedObject subclasses, but I'm not 100% sure -- there could be some behavior in there that I didn't catch. Beware.
Also, as it stands, if you use this approach, you don't have a good way to know if valueForKey: is returning nil because the keyPath is valid and the state happened to be nil, or if it's returning nil because the keyPath is invalid and the grafted-on handler returned nil. To do that, you'd need to do something different, and implementation specific. (Perhaps return [NSNull null] or some other sentinel value, or set some flag in thread-local storage that you could check, but at this point is it really all that much easier than #try/#catch?) Just something to be aware of.
This appears to work pretty well for me; Hope it's useful to you.
There's no easy way to solve this. Key Value Coding (KVC) isn't intended to be used that way.
One thing is for sure: using #try-#catch is really bad since you're very likely to leak memory etc. Exceptions in ObjC / iOS are not intended for normal program flow. They're also very expensive (both throwing and setting up the #try-#catch IIRC).
If you look at the Foundation/NSKeyValueCoding.h header, the comment / documentation for
- (id)valueForKey:(NSString *)key;
clearly states which methods need to be implemented for -valueForKey: to work. This may even use direct ivar access. You would have to check each one in the order described there. You need to take the key path, split it up based on . and check each part on each subsequent object. To access ivars, you need to use the ObjC runtime. Look at objc/runtime.h.
All of this is vary hacky, though. What you probably want is for your objects to implement some formal protocol and then check -conformsToProtocol: before calling.
Are your key paths random strings or are those strings under your control? What are you trying to achieve? Are you solving the wrong problem?
I don't believe this is possible in a safe way (i.e. without mucking with -valueForUndefinedKey: or something similar on other peoples' classes). I say that because on the Mac side of things, Cocoa Bindings—which can be set to substitute a default value for invalid key paths—simply catches the exceptions that result from bad key paths. If even Apple's engineers don't have a way to test if a key path is valid without trying it and catching the exception, I have to assume that such a way doesn't exist.

Objective-C pattern for class instance variables?

What would be a nice pattern in Objective-C for class variables that can be "overridden" by subclasses?
Regular Class variables are usually simulated in Objective-C using a file-local static variables together with exposed accessors defined as Class methods.
However, this, as any Class variables, means the value is shared between the class and all its subclasses. Sometimes, it's interesting for the subclass to change the value for itself only. This is typically the case when Class variables are used for configuration.
Here is an example: in some iOS App, I have many objects of a given common abstract superclass (Annotation) that come in a number of concrete variations (subclasses). All annotations are represented graphically with a label, and the label color must reflect the specific kind (subclass) of its annotation. So all Foo annotations must have a green label, and all Bar annotations must have a blue label. Storing the label color in each instance would be wasteful (and in reality, perhaps impossible as I have many objects, and actual configuration data - common to each instance - is far larger than a single color).
At runtime, the user could decide that all Foo annotations now will have a red label. And so on.
Since in Objective-C, Classes are actual objects, this calls for storing the Foo label color in the Foo class object. But is that even possible? What would be a good pattern for this kind of things? Of course, it's possible to define some sort of global dictionary mapping the class to its configuration value, but that would be kind of ugly.
Of course, it's possible to define some sort of global dictionary mapping the class to its configuration value, but that would be kind of ugly.
Why do you think this would be ugly? It is a very simple approach since you can use [self className] as the key in the dictionary. It is also easy to make it persistent since you can simply store the dictionary in NSUserDefaults (as long as it contains only property-list objects). You could also have each class default to its superclass's values by calling the superclass method until you find a class with a value.
+ (id)classConfigurationForKey:(NSString *)key {
if(_configurationDict == nil) [self loadConfigurations]; // Gets stored values
Class c = [self class];
id value = nil;
while(value == nil) {
NSDictionary *classConfig = [_configurationDict objectForKey:[c className]];
if(classConfig) {
value = [classConfig objectForKey:key];
}
c = [c superclass];
}
return value;
}
+ (void)setClassConfiguration:(id)value forKey:(NSString *)key {
if(_configurationDict == nil) [self loadConfigurations]; // Gets stored values
NSMutableDictionary *classConfig = [_configurationDict objectForKey:[self className]];
if(classConfig == nil) {
classConfig = [NSMutableDictionary dictionary];
[_configurationDict setObject:classConfig forKey:[self className]];
}
[classConfig setObject:value forKey:key];
}
This implementation provides no checking to make sure you don't go over the top superclass, so you will need to ensure that there is a value for that class to avoid an infinite loop.
If you want to store objects which can't be stored in a property list, you can use a method to convert back and forth when you access the dictionary. Here is an example for accessing the labelColor property, which is a UIColor object.
+ (UIColor *)classLabelColor {
NSData *data = [self classConfigurationForKey:#"labelColor"];
return [NSKeyedUnarchiver unarchiveObjectWithData:data];
}
+ (void)setClassLabelColor:(UIColor *)color {
NSData *data = [NSKeyedArchiver archivedDataWithRootObject:color];
[self setClassConfiguration:data forKey:#"labelColor"];
}
my answer here may help:
What is the recommended method of styling an iOS app?
in that case, your annotation just holds a reference to a style (e.g. you need only one per style), and the size of a pointer for an entire style is not bad. either way, that post may give you some ideas.
Update
Jean-Denis Muys: That addresses the sample use case of my question, but not my question itself (a pattern to simulate class instance variables).
you're right, i didn't know how closely your example modeled your problem and i considered commenting on that.
for a more general and reusable solution, i'd probably just write a threadsafe global dictionary if your global data is nontrivial (as you mentioned in your OP). you could either populate it in +initialize or lazily by introducing a class method. then you could add a few categories to NSObject to access and mutate the static data -- do this for syntactical ease.
i suppose the good thing about that approach is that you can reuse it in any program (even though it may appear ugly or complex to write). if that's too much locking, then you may want to divide dictionaries by prefixes or create a simple thread safe dictionary which your class holds a reference to -- you can then synthesize an instance variable via the objc runtime to store it and declare an instance method to access it. the class method would still have to use the global data interface directly.

Why shouldn't I use the getter to release a property in objective-c?

I was told by a fellow StackOverflow user that I should not use the getter method when releasing a property:
#property(nonatmic, retain) Type* variable;
#synthesize variable;
// wrong
[self.variable release];
// right
[variable release];
He did not explain in detail why. They appear the same to me. My iOS book said the getter on a property will look like this:
- (id)variable {
return variable;
}
So doesn't this mean [self variable], self.variable, and variable are all the same?
For a retained property with no custom accessor, you can release the object by:
self.variable = nil;
This has the effect of setting the ivar (which may not be called 'variable' if you have only declared properties) to nil and releasing the previous value.
As others have pointed out, either directly releasing the ivar (if available) or using the method above is OK - what you must not do is call release on the variable returned from a getter.
You can optionally write custom getter behavior, which may result in completely different behavior. So, you cannot always assume that [variable release] has the same results as [self.variable release].
As well, you can write custom properties without an exclusive ivar backing them... it can get messy fast if you start releasing objects from references returned by getters!
There may be additional reasons that I'm unaware of...
A typical getter will look more like this:
- (id)variable {
return [[variable retain] autorelease];
}
So if you use [self.variable release] you have an additional retain and autorelease that you don't really need when you just want to release the object and that cause the object to be released later than necessary (when the autorelease pool is drained).
Typically, you would either use self.variable = nil which has the benefit that it also sets the variable to nil (avoiding crashes due to dangling pointers), or [variable release] which is the fastest and may be more appropriate in a dealloc method if your setter has custom logic.
not all getters take this form:
- (id)variable { return variable; }
...that is merely the most primitive form. properties alone should suggest more combinations, which alter the implementation. the primitive accessor above does not account for idioms used in conjunction with memory management, atomicity, or copy semantics. the implementation is also fragile in subclass overrides.
some really brief examples follow; things obviously become more complex in real programs where implementations become considerably more complex.
1) the getter may not return the instance variable. one of several possibilities:
- (NSObject *)a { return [[a copy] autorelease]; }
2) the setter may not retain the instance variable. one of several possibilities:
- (void)setA:(NSObject *)arg
{
...
a = [arg copy];
...
}
3) you end up with memory management implementation throughout your program, which makes it difficult to maintain. the semantics of the class (and how it handles instance variables' ref counting) should be kept to the class, and follow conventions for expected results:
- (void)stuff:(NSString *)arg
{
const bool TheRightWay = false;
if (TheRightWay) {
NSMutableString * string = [arg mutableCopy];
[string appendString:#"2"];
self.a = string;
[string release];
// - or -
NSMutableString * string = [[arg mutableCopy] autorelase];
[string appendString:#"2"];
self.a = string;
}
else {
NSMutableString * string = [arg mutableCopy];
[string appendString:#"2"];
self.a = string;
[self.a release];
}
}
failing to follow these simple rules makes your code hard to maintain and debug and painful to extend.
so the short of it is that you want to make your program easy to maintain. calling release directly on a property requires you to know a lot of context of the inner workings of the class; that's obviously bad and misses strong ideals of good OOD.
it also expects the authors/subclassers/clients to know exactly how the class deviates from convention, which is silly and time consuming when issues arise and you have to relearn all the inner details when issues arise (they will at some point).
those are some trivial examples of how calling release on the result of a property introduces problems. many real world problems are much subtler and difficult to locate.