SQL - Join Aggregated query or Aggregate/Sum after join? - sql

I have a hard time figuring out what is best, or if there is difference at all,
however i have not found any material to help my understanding of this,
so i will ask this question, if not for me, then for others who might end up in the same situation.
Aggregating a sub-query before or after a join, in my specific situation the sub-query is rather slow due to fragmented data and bad normalization procedure,
I got a main query that is highly complex and a sub-query that is built from 3 small queries that is combined using union (will remove duplicate records)
i only need a single value from this sub-query (for each line), so at some point i will end up summing this value, (together with grouping the necessary control data with it so i can join)
what will have the greatest impact?
To sum sub-query before the join and then join with the aggregated version
To leave the data raw, and then sum the value together with the rest of the main query
remember there are thousands of records that will be summed for each line,
and the data is not native but built, and therefore may reside in memory,
(that is just a guess from the query optimizers perspective)

Usually I keep the group-by inside the subquery (referred as "inline view" in Oracle lingo).
This way the query is much more simple and clear.
Also I believe the execution plan is more efficient, because the data set to be aggregated is smaller and the resulting set of join keys is also smaller.
This is not a definitive answer though. If the row source that you are joining to the inline view has few matching rows, you may find that a early join reduces the aggregation effort.
The right anwer is: benchmark the queries for your particular data set.

I think in such a general way there is no right or wrong way to do it. The performance from a query like the one that you describe depends on many different factors:
what kind of join are you actually doing (and what algorithm is used in the background)
is the data to be joined small enough to fit into the memory of the machine joining it?
what query optimizations are you using, i.e. what DBMS (Oracle, MsSQL, MySQL, ...)
...
For your case I simply suggest benchmarking. I'm sorry if that does not seem like a satisfactory answer, but it is the way to go in many performance questions...
So set up a simple test using both your approaches and some test data, then pick whatever is faster.

Related

Methods of visualizing joins

Just wondering if anyone has any tricks (or tools) they use to visualize joins. You know, you write the perfect query, hit run, and after it's been running for 20 minutes, you realize you've probably created a cartesian join.
I sometimes have difficulty visualizing what's going to happen when I add another join statement and wondered if folks have different techniques they use when trying to put together lots of joins.
Always keep the end in mind.
Ascertain which are the columns you need
Try to figure out the minimum number of tables which will be needed to do it.
Write your FROM part with the table which will give max number of columns. eg FROM Teams T
Add each join one by one on a new line. Ensure whether you'll need OUTER, INNER, LEFT, RIGHT JOIN at each step.
Usually works for me. Keep in mind that it is Structured query language. Always break your query into logical lines and it's much easier.
Every join combines two resultsets into one. Each may be from a single database table or a temporary resultset which is the result of previous join(s) or of a subquery.
Always know the order that joins are processed, and, for each join, know the nature of the two temporary result sets that you are joining together. Know what logical entity each row in that resultset represents, and what attributes in that resultset uniquely identify that entity. If your join is intended to always join one row to one row, these key attributes are the ones you need to use (in join conditions) to implement the join. If your join is intended to generate some kind of cartesian product, then it is critical to understand the above to understand how the join conditions (whatever they are) will affect the cardinality of the new joined resultset.
Try to be consistent in the use of outer join directions. I try to always use Left Joins when I need an outer join, as I "think" of each join as "joining" the new table (to the right) to whatever I have already joined together (on the left) of the Left Join statement...
Run an explain plan.
These are always hierarchical trees (to do this, first I must do that). Many tools exist to make these plans into graphical trees, some in SQL browsers, (e.g, Oracle SQLDeveloper, whatever SQlServer's GUI client is called). If you don't have a tool, most plan text ouput includes a "depth" column, which you can use to indent the line.
What you want to look for is the cost of each row. (Note that for Oracle, though, higher costs can mean less time, if it allows Oracle to do a hash join rather than nested loops, and if the final result set has high cardinality (many, many rows).)
I have never found a better tool than thinking it through and using my own mind.
If the query is so complicated that you cannot do that, you may want to use either CTE's, views, or some other carefully organized subqueries to break it into logical pieces so you can easily understand and visualize each piece even if you cannot manage the whole.
Also, if your concern is effeciency, then SQL Server Management Studio 2005 or later lets you get estimated query execution plans without actually executing the query. This can give you very good ideas of where problems lie, if you are using MS SQL Server.

Correlated query vs inner join performance in SQL Server

let's say that you want to select all rows from one table that have a corresponding row in another one (the data in the other table is not important, only the presence of a corresponding row is important). From what I know about DB2, this kinda query is better performing when written as a correlated query with a EXISTS clause rather than a INNER JOIN. Is that the same for SQL Server? Or doesn't it make any difference whatsoever?
I just ran a test query and the two statements ended up with the exact same execution plan. Of course, for just about any performance question I would recommend running the test on your own environment; With SQL server Management Studio this is easy (or SQL Query Analyzer if your running 2000). Just type both statements into a query window, select Query|Include Actual Query Plan. Then run the query. Go to the results tab and you can easily see what the plans are and which one had a higher cost.
Odd: it's normally more natural for me to write these as a correlated query first, at which point I have to then go back and re-factor to use a join because in my experience the sql server optimizer is more likely to get that right.
But don't take me too seriously. For all I have 26K rep here and one of only 2 current sql topic-specific badges, I'm actually pretty junior in terms of sql knowledge (It's all about the volume! ;) ); certainly I'm no DBA. In practice, you will of course need to profile each method to gauge it's actual performance. I would expect the optimizer to recognize what you're asking for and handle either query in the optimal way, but you never know until you check.
As everyone notes, it all boils down to the optimizer. I'd suggest writing it in whatever way feels more natural to you, then making sure the optimizer can figure out the most effective query plan (gather statistics, create an index, whatever). The SQL Server optimizer is pretty good overall, so long as you give it the information it needs to work with.
Use the join. It might not make much of a difference in performance if you have small tables, but if the "outer" table is very large then it will need to do the EXISTS sub-query for each row. If your tables are indexed on the common columns then it should be far quicker to do the INNER JOIN. BTW, if you want to find all rows that are NOT in the second table, use a LEFT JOIN and test for NULL in the second table--it is much faster than using EXISTS when you have very large tables and indexes.
Probably the best performance is with a join to a derived table. Exists would probably be next (and might be faster). The worst performance would be with a subquery inside the select as it would tend to run row by row instead of as a set.
However, all things being equal and database performance being very dependent on the database design. I would try out all possible methods and see which are faster in your circumstances.

LEFT JOIN vs. multiple SELECT statements

I am working on someone else's PHP code and seeing this pattern over and over:
(pseudocode)
result = SELECT blah1, blah2, foreign_key FROM foo WHERE key=bar
if foreign_key > 0
other_result = SELECT something FROM foo2 WHERE key=foreign_key
end
The code needs to branch if there is no related row in the other table, but couldn't this be done better by doing a LEFT JOIN in a single SELECT statement? Am I missing some performance benefit? Portability issue? Or am I just nitpicking?
This is definitely wrong. You are going over the wire a second time for no reason. DBs are very fast at their problem space. Joining tables is one of those and you'll see more of a performance degradation from the second query then the join. Unless your tablespace is hundreds of millions of records, this is not a good idea.
There is not enough information to really answer the question. I've worked on applications where decreasing the query count for one reason and increasing the query count for another reason both gave performance improvements. In the same application!
For certain combinations of table size, database configuration and how often the foreign table would be queried, doing the two queries can be much faster than a LEFT JOIN. But experience and testing is the only thing that will tell you that. MySQL with moderately large tables seems to be susceptable to this, IME. Performing three queries on one table can often be much faster than one query JOINing the three. I've seen speedups of an order of magnitude.
I'm with you - a single SQL would be better
There's a danger of treating your SQL DBMS as if it was a ISAM file system, selecting from a single table at a time. It might be cleaner to use a single SELECT with the outer join. On the other hand, detecting null in the application code and deciding what to do based on null vs non-null is also not completely clean.
One advantage of a single statement - you have fewer round trips to the server - especially if the SQL is prepared dynamically each time the other result is needed.
On average, then, a single SELECT statement is better. It gives the optimizer something to do and saves it getting too bored as well.
It seems to me that what you're saying is fairly valid - why fire off two calls to the database when one will do - unless both records are needed independently as objects(?)
Of course while it might not be as simple code wise to pull it all back in one call from the database and separate out the fields into the two separate objects, it does mean that you're only dependent on the database for one call rather than two...
This would be nicer to read as a query:
Select a.blah1, a.blah2, b.something From foo a Left Join foo2 b On a.foreign_key = b.key Where a.Key = bar;
And this way you can check you got a result in one go and have the database do all the heavy lifting in one query rather than two...
Yeah, I think it seems like what you're saying is correct.
The most likely explanation is that the developer simply doesn't know how outer joins work. This is very common, even among developers who are quite experienced in their own specialty.
There's also a widespread myth that "queries with joins are slow." So many developers blindly avoid joins at all costs, even to the extreme of running multiple queries where one would be better.
The myth of avoiding joins is like saying we should avoid writing loops in our application code, because running a line of code multiple times is obviously slower than running it once. To say nothing of the "overhead" of ++i and testing i<20 during every iteration!
You are completely correct that the single query is the way to go. To add some value to the other answers offered let me add this axiom: "Use the right tool for the job, the Database server should handle the querying work, the code should handle the procedural work."
The key idea behind this concept is that the compiler/query optimizers can do a better job if they know the entire problem domain instead of half of it.
Considering that in one database hit you have all the data you need having one single SQL statement would be better performance 99% of the time. Not sure if the connections is being creating dynamically in this case or not but if so doing so is expensive. Even if the process if reusing existing connections the DBMS is not getting optimize the queries be best way and not really making use of the relationships.
The only way I could ever see doing the calls like this for performance reasons is if the data being retrieved by the foreign key is a large amount and it is only needed in some cases. But in the sample you describe it just grabs it if it exists so this is not the case and therefore not gaining any performance.
The only "gotcha" to all of this is if the result set to work with contains a lot of joins, or even nested joins.
I've had two or three instances now where the original query I was inheriting consisted of a single query that had so a lot of joins in it and it would take the SQL a good minute to prepare the statement.
I went back into the procedure, leveraged some table variables (or temporary tables) and broke the query down into a lot of the smaller single select type statements and constructed the final result set in this manner.
This update dramatically fixed the response time, down to a few seconds, because it was easier to do a lot of simple "one shots" to retrieve the necessary data.
I'm not trying to object for objections sake here, but just to point out that the code may have been broken down to such a granular level to address a similar issue.
A single SQL query would lead in more performance as the SQL server (Which sometimes doesn't share the same location) just needs to handle one request, if you would use multiple SQL queries then you introduce a lot of overhead:
Executing more CPU instructions,
sending a second query to the server,
create a second thread on the server,
execute possible more CPU instructions
on the sever, destroy a second thread
on the server, send the second results
back.
There might be exceptional cases where the performance could be better, but for simple things you can't reach better performance by doing a bit more work.
Doing a simple two table join is usually the best way to go after this problem domain, however depending on the state of the tables and indexing, there are certain cases where it may be better to do the two select statements, but typically I haven't run into this problem until I started approaching 3-5 joined tables, not just 2.
Just make sure you have covering indexes on both tables to ensure you aren't scanning the disk for all records, that is the biggest performance hit a database gets (in my limited experience)
You should always try to minimize the number of query to the database when you can. Your example is perfect for only 1 query. This way you will be able later to cache more easily or to handle more request in same time because instead of always using 2-3 query that require a connexion, you will have only 1 each time.
There are many cases that will require different solutions and it isn't possible to explain all together.
Join scans both the tables and loops to match the first table record in second table. Simple select query will work faster in many cases as It only take cares for the primary/unique key(if exists) to search the data internally.

performance - single join select vs. multiple simple selects

What is better as far as performance goes?
There is only one way to know: Time it.
In general, I think a single join enables the database to do a lot of optimizations, as it can see all the tables it needs to scan, overhead is reduced, and it can build up the result set locally.
Recently, I had about 100 select-statements which I changed into a JOIN in my code. With a few indexes, I was able to go from 1 minute running time to about 0.6 seconds.
Do not try to write your own join loop as a bunch of selects. Your database server has many clever algorithms for doing joins. Further, your database server can use statistics and estimated cost of access to dynamically pick a join algorithm.
The database server's join algorithm is -- usually -- better than anything you might concoct. They know more about physical I/O, caching and what-not.
This allows you to focus on your problem domain.
A single join will usually outperform multiple single selects. However, there are too many different cases that fit your question. It isn't wise to lump them together under a single simple rule.
More important, a single join will usually be easier for the next programmer to understand and to revise, provided that you and the next programmer "speak the same language" when you use SQL. I'm talking about the language of sets of tuples.
And equally important is that database physical design and query design need to focus first on the questions that will result in a ten for one speed improvement, not on a 10% speed imporvement. If you were doing thousands of simple selects versus a single join, you might get a ten for one advantage. If you are doing three or four simple selects, you won't see a big improvement one way or the other.
One thing to consider besides what has been said, is that the selects will return more data through the network than the joins probably will. If the network connection is already a bottleneck, this could make it much worse, especially if this is done frequently. That said, your best bet in any performacne situation is to test, test, test.
It all depends on how the database will optimize the joins, and the use of indexes.
I had a slow and complex query with lots of joins. Then i subdivided it into 2 or 3 less complex querys. The performance gain was astonishing.
But in the end, "it depends", you have to know where´s the bottleneck.
As has been said before, there is no right answer without context.
The answer to this is dependent on (from the top of my head):
the amount of joining
the type of joining
indexing
the amount of re-use you could have for any of the separate pieces to be joined
the amount of data to be processed
the server setup
etc.
If you are using SQL Server (I am not sure if this is available with other RDBMSs) I would suggest that you bundle an execution plan with you query results. This will give you the ability to see exactly how your query(s) are being executed and what is causing any bottlenecks.
Until you know what SQL Server is actually doing I wouldn't hazard a guess about which query is better.
If your database has lots of data .... and there are multiple joins then please use indexing for better performance.
If there are left/right outer joins in this case , then use multiple selects.
It all depends on your db size, your query, the indexes (which include primary and foreign keys also) ... One cannot reach on conclusion with yes/no on your question.

Transact-SQL - sub query or left-join?

I have two tables containing Tasks and Notes, and want to retrieve a list of tasks with the number of associated notes for each one. These two queries do the job:
select t.TaskId,
(select count(n.TaskNoteId) from TaskNote n where n.TaskId = t.TaskId) 'Notes'
from Task t
-- or
select t.TaskId,
count(n.TaskNoteId) 'Notes'
from Task t
left join
TaskNote n
on t.TaskId = n.TaskId
group by t.TaskId
Is there a difference between them and should I be using one over the other, or are they just two ways of doing the same job? Thanks.
On small datasets they are wash when it comes to performance. When indexed, the LOJ is a little better.
I've found on large datasets that an inner join (an inner join will work too.) will outperform the subquery by a very large factor (sorry, no numbers).
In most cases, the optimizer will treat them the same.
I tend to prefer the second, because it has less nesting, which makes it easier to read and easier to maintain. I have started to use SQL Server's common table expressions to reduce nesting as well for the same reason.
In addition, the second syntax is more flexible if there are further aggregates which may be added in the future in addition to COUNT, like MIN(some_scalar), MAX(), AVG() etc.
The subquery will be slower as it is being executed for every row in the outer query. The join will be faster as it is done once. I believe that the query optimiser will not rewrite this query plan as it can't recognize the equivalence.
Normally you would do a join and group by for this sort of count. Correlated subqueries of the sort you show are mainly of interest if they have to do some grouping or more complex predicate on a table that is not participating in another join.
If you're using SQL Server Management Studio, you can enter both versions into the Query Editor and then right-click and choose Display Estimated Execution Plan. It will give you two percentage costs relative to the batch. If they're expected to take the same time, they'll both show as 50% - in which case, choose whichever you prefer for other reasons (easier to read, easier to maintain, better fit with your coding standards etc). Otherwise, you can pick the one with the lower percentage cost relative to the batch.
You can use the same technique to look at changing any query to improve performance by comparing two versions that do the same thing.
Of course, because it's a cost relative to the batch, it doesn't mean that either query is as fast as it could be - it just tells you how they compare to each other, not to some notional optimum query to get the same results.
There's no clear-cut answer on this. You should view the SQL Plan. In terms of relational algebra, they are essentially equivalent.
I make it a point to avoid subqueries wherever possible. The join will generally be more efficient.
You can use either, and they are semantically identical. In general, the rule of thumb is to use whichever form is easier for you to read, unless performance is an issue.
If performance is an issue, then experiment with rewriting the query using the other form. Sometimes the optimizer will use an index for one form, and not the other.