Check for completion within NSMutableArray of custom objects populated from NSURLConnection - objective-c

First off, a big thank you to the SO community. I have learned a great deal. However, I am still an extreme novice w/re to Objective C and thus have a question. Apologies in advance if this is an ignorant question.
I have subclassed NSURLConnection to fetch my custom objects (myObject) from my web API. Each object requires 2 calls to the API for completion. The first call is to grab an id property from a list of my Objects. The second call is the to use that id to construct a different URL and populate the rest of the myObject properties. All is working well but I have a question as to the correctness of my approach for reloading a tableViewsection based on a completion of all of themyObjectobjects within anNSMutableArray`.
Here is the method I call after successfully instantiating and fetching all of the incomplete myObjects and adding them to an NSMutableArray. messageStringis a property of myObject that is only available/set on the second network call for each of the instances of myObject. Thus, I thought I would use it to check for completeness. arrayOfMyObjects is mutable and contains all of the incomplete myObjects. MyStoreClass is just that. A store that handles the creation of the subclassed NSURLConnections.
- (void)fetchDetails {
void (^completionBlock)(myObject *obj, NSError *err, int statusCode) = ^(myObject *obj, NSError *err, int statusCode) {
if (!err && statusCode == 200) {
NSArray *completionCheckArray = [arrayOfMyObjects filteredArrayUsingPredicate:[NSPredicate predicateWithFormat:#"messageString = %#", [NSNull null]]];
if ([completionCheckArray count] == 0) {
[[self tableView] reloadSections:[NSIndexSet indexSetWithIndex:1] withRowAnimation:UITableViewRowAnimationAutomatic];
}
} else if (!err && statusCode != 200) {
[self statusCodeError:statusCode];
} else {
[self generalError:err];
}
};
for (myObject *mobj in arrayOfMyObjects) {
[[MyStoreClass sharedStore] fetchDetails:mobj withCompletion:completionBlock];
}
}
While this works, it seems inefficient to me to have to create an array through the completion block for every single one of myObjects. If so, what would be an alternative approach to checking completion of all of myObjects?

A possible and feasible approach would be to go wit KVO (Key Value Observing). Check out the appropriate Key-Value Observing Programming Guide.
For example: If you know how many objects (i.e. object count) you're expecting from a given service call,
you could hook up an observer on the array object holding your objects and be notified whenever an element is added etc.
See Observing an NSMutableArray for insertion/removal.

Related

How to replicate NSArray memory semantics in a subclass

Question
In my ARC project I have a class that manages objects, called LazyMutableArray. Some of the objects are actually nil, but users of my collection will never know about this; therefore I made it a subclass of NSMutableArray, and it tries to do "the same thing". In particular, objects are retained when added.
Now let's take a look at a memory behavior of other methods. It turns out that the NSArray destruction methods are documented by Apple to be an exception to this rule, in that they release, not autoreleased object.
There is some debate as to whether the combination of addObject: + objectAtIndex: + array destruction is documented by Apple to be never autoreleasing or simply happens to be in the examples I tested and in the example Apple includes.
How can I create in my subclass a method with exact same memory semantics?
Last update
After some thought, I've decided implementation based on NSMutableArray is more appropriate in this case compared to NSPointerArray. The new class, I should note, has the same retain/autorelease pair as the previous implementation.
Thanks to Rob Napier I see that no modification of my objectAtIndex: method would change this behavior, which answers my original question about this method.
On a practical level, several people said that any method can tackle an extra retain/autorelease pair for no reason; it's not reasonable to expect otherwise and not reasonable to try to find out which methods do this and which do not. It's been therefore a great learning opportunity for me on several levels.
Code (based on NSMutableArray) is available at GitHub: implementation, header, test (that's -testLazyMutableMemorySemantics).
Thank you all for participating.
Why I try to subclass NSMutableArray:
Subclassing foundation objects, I agree, is not always an appropriate solution. In tho case I have objects (in fact, OData resources), most of which have subobjects. The most natural class for an array of subobjects is obviously NSArray. Using a different class doesn't seem to make sense to me.
But for an OData collection this "array of sub objects", while, being an NSArray, must have a different implementation. Specifically, for a collection of 1000 elements, servers are encouraged to return collection in batches of (say)20, instead of all at once. If there is another pattern appropriate in this case, I'm all ears.
Some more detail in how I found this
I unit test the hell out of this collection, and values can be put into array, read from the array, and so forth. So far, so good. However, I realized that returning the object increases its retain count.
How do I see it? Suppose I insert two objects into lazy array lazy, one held weakly, one held strongly (*see the code *). Then retain count of weakSingleton is, as expected, 1. But now I read element:
XCTAssertEqual(weakSingleton, lazy[0], #"Correct element storage"); // line B
And in the debugger I see the retain count go up to 2. Of course, -retainCount may give me wrong information, so let's try to destroy the reference in array by
lazy[0] = nil; // yep, does the right thing
XCTAssertNil(weakSingleton, #"Dropped by lazy array"); // line C <-- FAIL
indeed, we see that weakSingleton is not released.
By now you probably guess that it's not just a retain, it's an autoreleased retain — putting an #autorelease around line B releases the weakSingleton. The exact source of this pair is not obvious, but seems to come from NSPointerArray -addPointer: (and unfortunately not from ARC's [[object retain] autorelease]). However, I don't want to return an autoreleased object and make method semantics different from its superclass!
After all, the method I'm overriding, NSMutableArray -objectAtIndex:`, doesn't do that; the object it returns will dealloc immediately if an array is released, as noted in the Apple's example. That's what I want: modify the method around line A so that the object it returns does not have an extra retain/autorelease pair. I'm not sure the compiler should even let me do it :)
Note 1 I could turn off ARC for a single file, but this would be my first non-ARC Objective-C code. And in any case the behavior may not some from ARC.
Note 2 What the fuss? Well, in this case I could change my unit tests, but still, the fact is that by adding or deleting line B, I'm changing the result of unit test at line C.
In other words, the described behavior of my method [LazyMutableArray -objectAtIndex] is essentially that by reading an object at index 0, I'm actually changing the retain count of this object, which means I could encounter unexpected bugs.
Note 3 Of course, if nothing is to be done about this, I'll document this behavior and move on; perhaps, this indeed should be considered an implementation detail, not to be included into tests.
Relevant methods from implementation
#implementation LazyMutableArray {
NSPointerArray *_objects;
// Created lazily, only on -setCount:, insert/add object.
}
- (id)objectAtIndex:(NSUInteger)index {
#synchronized(self) {
if (index >= self.count) {
return nil;
}
__weak id object = [_objects pointerAtIndex:index];
if (object) {
return object;
}
}
// otherwise do something else to compute a return value
// but this branch is never called in this test
[self.delegate array:self missingObjectAtIndex:index];
#synchronized(self) {
if (index >= self.count) {
return nil;
}
__weak id object = [_objects pointerAtIndex:index];
if (object) {
return object;
}
}
#throw([NSException exceptionWithName:NSObjectNotAvailableException
reason:#"Delegate was not able to provide a non-nil element to a lazy array"
userInfo:nil]);
}
- (void)createObjects {
if (!_objects) {
_objects = [NSPointerArray strongObjectsPointerArray];
}
}
- (void)addObject:(id)anObject {
[self createObjects];
[_objects addPointer:(__bridge void*)anObject];
}
The complete test code:
// Insert two objects into lazy array, one held weakly, one held strongly.
NSMutableArray * lazy = [LazyMutableArray new];
id singleton = [NSMutableArray new];
[lazy addObject:singleton];
__weak id weakSingleton = singleton;
singleton = [NSMutableDictionary new];
[lazy addObject:singleton];
XCTAssertNotNil(weakSingleton, #"Held by lazy array");
XCTAssertTrue(lazy.count == 2, #"Cleaning and adding objects");
// #autoreleasepool {
XCTAssertEqual(weakSingleton, lazy[0], #"Correct element storage");
XCTAssertEqual(singleton, lazy[1], #"Correct element storage");
// }
lazy = nil;
XCTAssertNotNil(singleton, #"Not dropped by lazy array");
XCTAssertNil(weakSingleton, #"Dropped by lazy array");
The last line fails, but it succeeds if I change first line to lazy = [NSMutableArray new] or if I uncomment #autoreleasepool.
First, I would not make this subclass. This is exactly what NSPointerArray is for. Wrapping that into an NSArray obscures important details that this approach can break. For example, what is the correct behavior for [NSArray arrayWithArray:lazyMutableArray] if lazyMutableArray includes NULLs? Algorithms that assume that NSArray can never include NULL need to be wary of the fact that this one can. It's true that you can get similar issues treating a non-retaining CFArray as an NSArray; I speak from experience that this is exactly why this kind of subclass can be very dangerous (and why I stopped doing that years ago). Don't create a subclass that cannot be used in every case that its superclass can be used (LSP).
If you have a collection with new semantics, I would subclass it from NSObject, and have it conform to <NSFastEnumeration>. See how NSPointerArray is not a subclass of NSArray. This was not an accident. Faced with the same problem, note the direction Apple chose.
By now you probably guess that it's not just a retain, it's an autoreleased retain — putting an #autorelease around line B releases the weakSingleton. This seems to be because line A under ARC translates to [[object retain] autorelease]. However, I don't want to return an autoreleased object and make caller remember this!
The caller should never assume anything else. The caller is never free to assume that a method does not add balanced autoreleases. If a caller wants the autorelease pool to drain, that is their responsibility.
All that said, there is some benefit to avoiding an extra autorelease if it's not required, and it's an interesting learning opportunity.
I would start by reducing this code to the simplest form, without your subclass at all. Just explore how NSPointerArray works:
__weak id weakobject;
#autoreleasepool
{
NSPointerArray *parray = [NSPointerArray strongObjectsPointerArray];
{
id object = [NSObject new];
[parray addPointer:(__bridge void*)object];
weakobject = object;
}
parray = nil;
}
NSAssert(!weakobject, #"weakobject still exists");
My structure here (such as the extra nesting block) is designed to try to avoid accidentally creating strong references I don't mean to make.
In my experiments, this fails without the autoreleasepool and succeeds with it. That indicates that the extra retain/autorelease is being added around or by the call to addPointer:, not by ARC modifying your interface.
If you're not using this implementation for addObject:, I'd be interested in digging deeper. It is an interesting question, even if I don't believe you should be subclassing this way.
I'm going to elaborate on why I said this "looks a lot like a homework assignment." This will likely earn me many down votes, but it will also server as a good learning case for others who later find this question.
Subclassing NSMutableArray not a goal of a program. It is a means to achieve something else. If I were to venture a guess, I expect you were trying to create an array that lazily creates the object when they are accessed. There are better ways to do this without dealing with memory management yourself.
Here's an example of how I would implement a lazy loading array.
#interface LazyMutableArray : NSMutableArray
- (id)initWithCreator:(id(^)(int))creator;
#end
#interface LazyMutableArray ( )
#property (nonatomic, copy) id (^creator)(int);
#property (nonatomic, assign) NSUInteger highestSet;
#end
#implementation LazyMutableArray
- (id)initWithCreator:(id(^)(int))creator
{
self = [super init];
if (self) {
self.highestSet = NSNotFound;
self.creator = creator;
}
return self;
}
- (id)objectAtIndex:(NSUInteger)index
{
id obj = nil;
if ((index < self.highestSet) && (self.highestSet != NSNotFound)) {
obj = [super objectAtIndex:index];
if ([obj isKindOfClass:[NSNull class]]) {
obj = self.creator(index);
[super replaceObjectAtIndex:index withObject:obj];
}
} else {
if (self.highestSet == NSNotFound) {
self.highestSet = 0;
}
while (self.highestSet < index) {
[super add:[NSNull null]];
self.highestSet += 1;
}
obj = self.creator(index);
[super add:obj];
self.highestSet += 1;
}
return obj;
}
Fair Warning: I'm not compiling or syntax checking any of this code. It probably has a few bugs in it, but it should generally work. Additionally, this implementation is missing an implementation of add:, count, removeObjectAtIndex:, insertObject:atIndex:, and possibly replaceObjectAtIndex:withObject:. What I show here is just to get you started.

Thread-Safe lazy initialization in getter

I would like to know if both of the following solutions for lazy initialization are correct.
I have a class AppContext that is supposed to hold references to other class that should only exist once (Avoiding making every single one of these classes a singleton). Let's say one of these other classes is called ReferencedClass. That being said, I would like to lazy-initialize the references with defaults, in a thread-safe way.
It has been discussed before, and I have read a lot about it, but I am still unsure. Personal preferences aside, what I would like know is: Are these two solutions a correct way to implemented my desired behavior?
Solution 1: Originally I wanted to implement it like this:
// Getter with lazy initialized default value
- (ReferencedClass *)referencedClass {
// Check if nil. If yes, wait for lock and check again after locking.
if (_referencedClass == nil) {
#synchronized(self) {
if (_referencedClass == nil) {
// Prevent _referencedClass pointing to partially initialized objects
ReferencedClass *temp = [[ReferencedClass alloc] init];
_referencedClass = temp;
}
}
}
return _referencedClass;
}
// Setter
- (void)setReferencedClass:(ReferencedClass *)referencedClass {
#synchronized(self) {
_referencedClass = referencedClass;
}
}
Solution 2: Then I decided to go with GCD instead, so I wrote this:
// Getter with lazy initialized default value
- (ReferencedClass *)referencedClass {
// Check if nil. If yes, wait for "lock" and check again after "locking".
if (_referencedClass == nil) {
dispatch_sync(syncDispatchQueue, ^{
if (_referencedClass == nil) {
// Prevent _referencedClass pointing to partially initialized objects
ReferencedClass *temp = [[ReferencedClass alloc] init];
_referencedClass = temp;
}
});
}
return _referencedClass;
}
// Setter
- (void)setReferencedClass:(ReferencedClass *)referencedClass {
dispatch_sync(syncDispatchQueue, ^{
_referencedClass = referencedClass;
});
}
Of course, somewhere (for example in the init-Method) I have initialized the syncDispatchQueue with something like:
syncDispatchQueue = dispatch_queue_create("com.stackoverflow.lazy", NULL);
Is this correct, thread-safe and deadlock-free code? Can I use the double-checked-locking together with the temp-variable? If this double-checked-locking is not safe, would my code in both cases be safe if I removed the outer checks? I guess so, right?
Thanks very much in advance!
[Side note: I am aware of dispatch_once and that some people say that (in contrary to the Apple documentation) it can also be used with instance variables. For now I would like to use one of these two options though. If possible. ]
As far as I understand it, your "double-checked locking" mechanism is not thread-safe,
because the assigment _referencedClass = ... is not atomic. So one thread might read a partially initialized variable in the outer if (_referencedClass == nil) check.
If you remove the outer checks, both versions look OK to me.
You may be interested in
What advantage(s) does dispatch_sync have over #synchronized?
which has a great answer explaining the differences in implementation and performance.

Call a method every time a parameter is set on Objective-C (Cocoa)

I currently have a class with 15 properties (and growing), and I'm finding myself having to call an update method every time one of those properties change.
Currently, I'm overriding every setter with a code like this:
-(void)setParameterName:(NSUInteger)newValue {
if (_param == newValue)
return;
_param = newValue;
[self redraw];
}
The method [self redraw]; being the key here.
Is there a better way to do it? Should I be using keyValue observers (the method observeValue:forKeyPath:ofObject:change:context:)?
Notes:
All properties (so far) are assign (mostly enum, NSUInteger, CGFloat and BOOL);
All those properties are set using bindings (method bind:toObject:withKeyPath:options:). Except when loading from the filesystem (which is not important, as I already call the drawing methods on every object after the loading is done);
The value changes are only for the current object. I do not need to be told when changes occur on other objects;
I have other properties that I don't need to watch the changes on it (because it will have no effect on my output and drawing the output is kinda time-consuming).
Thanks!
Since these properties are updated using bindings, which invoke -setValue:forKey:, you can override that method instead of writing custom setters:
+ (NSArray *) keysAffectingDrawing {
static NSArray *singleton;
if (!singleton)
singleton = [NSArray arrayWithObjects:
#"property1",
#"property2",
#"property3",
nil];
return singleton;
}
- (void) setValue:(id) value forKey:(NSString *) key {
[super setValue:value forKey:key];
if ([[CustomClass keysAffectingDrawing] containsObject:key]) [self redraw];
}
(I was first inclined recommend key-value observing but agree it's not the best solution here. I think the reason is in part that there's only one object, and in part because the design doesn't follow MVC. Usually in MVC an object that draws itself isn't the one with all the properties.)
(Added: Ahh, I see. The model is responsible for rendering the properties to a bitmap, and that's what -redraw does. That's fine MVC. To make it clearer, I recommend changing the name of the method from -redraw to something like -updateImage or -renderImage, since it doesn't actually do any drawing.)
You could use the Key-Value Observing to avoid repeating in all properties setter the method call, however i think that calling the method directly in the setter is not the wrong way to do it, and could even be faster ...

What's the way to communicate a set of Core Data objects stored in the background to the main thread?

Part of my iOS project polls a server for sets of objects, then converts and saves them to Core Data, to then update the UI with the results. The server tasks happens in a collection of NSOperation classes I call 'services' that operate in the background. If NSManagedObject and its ~Context were thread safe, I would have had the services call delegate methods on the main thread like this one:
- (void)service:(NSOperation *)service retrievedObjects:(NSArray *)objects;
Of course you can't pass around NSManagedObjects like this, so this delegate method is doomed. As far as I can see there are two solutions to get to the objects from the main thread. But I like neither of them, so I was hoping the great StackOverflow community could help me come up with a third.
I could perform an NSFetchRequest on the main thread to pull in the newly added or modified objects. The problem is that the Core Data store contains many more of these objects, so I have to add quite some verbosity to communicate the right set of objects. One way would be to add a property to the object like batchID, which I could then pass back to the delegate so it would know what to fetch. But adding data to the store to fix my concurrency limitations feels wrong.
I could also collect the newly added objects' objectID properties, put them in a list and send that list to the delegate method. The unfortunate thing though is that I have to populate the list after I save the context, which means I have to loop over the objects twice in the background before I have the correct list (first time is when parsing the server response). Then I still only have a list of objectIDs, which I have to individually reel in with existingObjectWithID:error: from the NSManagedObjectContext on the main thread. This just seems so cumbersome.
What piece of information am I missing? What's the third solution to bring a set of NSManagedObjects from a background thread to the main thread, without losing thread confinement?
epologee,
While you obviously have a solution you are happy with, let me suggest that you lose some valuable information, whether items are updated, deleted or inserted, with your mechanism. In my code, I just migrate the userInfo dictionary to the new MOC. Here is a general purpose routine to do so:
// Migrate a userInfo dictionary as defined by NSManagedObjectContextDidSaveNotification
// to the receiver context.
- (NSDictionary *) migrateUserInfo: (NSDictionary *) userInfo {
NSMutableDictionary *ui = [NSMutableDictionary dictionaryWithCapacity: userInfo.count];
NSSet * sourceSet = nil;
NSMutableSet *migratedSet = nil;
for (NSString *key in [userInfo allKeys]) {
sourceSet = [userInfo valueForKey: key];
migratedSet = [NSMutableSet setWithCapacity: sourceSet.count];
for (NSManagedObject *mo in sourceSet) {
[migratedSet addObject: [self.moc objectWithID: mo.objectID]];
}
[ui setValue: migratedSet forKey: key];
}
return ui;
} // -migrateUserInfo:
The above routine assumes it is a method of a class which has an #property NSManagedObjectContext *moc.
I hope you find the above useful.
Andrew
There's a section of the Core Data Programming Guide that addresses Concurrency with Core Data. In a nutshell, each thread should have its own managed object context and then use notifications to synchronize the contexts.
After a little experimentation, I decided to go for a slight alteration to my proposed method number 2. While performing background changes on the context, keep a score of the objects you want to delegate back to the main thread, say in an NSMutableArray *objectsOfInterest. We eventually want to get to the objectID keys of all the objects in this array, but because the objectID value changes when you save a context, we first have to perform that [context save:&error]. Right after the save, use the arrayFromObjectsAtKey: method from the NSArray category below to generate a list of objectID instances, like so:
NSArray *objectIDs = [objectsOfInterest arrayFromObjectsAtKey:#"objectID"];
That array you can pass back safely to the main thread via the delegate (do make sure your main thread context is updated with mergeChangesFromContextDidSaveNotification by listening to the NSManagedObjectContextDidSaveNotification). When you're ready to reel in the objects of the background operation, use the existingObjectsWithIDs:error: method from the category below to turn the array of objectID's back into a list of working NSManagedObjects.
Any suggestions to improve the conciseness or performance of these methods is appreciated.
#implementation NSArray (Concurrency)
- (NSArray *)arrayFromObjectsAtKey:(NSString *)key {
NSMutableArray *objectsAtKey = [NSMutableArray array];
for (id value in self) {
[objectsAtKey addObject:[value valueForKey:key]];
}
return objectsAtKey;
}
#end
#implementation NSManagedObjectContext (Concurrency)
- (NSArray *)existingObjectsWithIDs:(NSArray *)objectIDs error:(NSError **)error {
NSMutableArray *entities = [NSMutableArray array];
#try {
for (NSManagedObjectID *objectID in objectIDs) {
// existingObjectWithID might return nil if it can't find the objectID, but if you're not prepared for this,
// don't use this method but write your own.
[entities addObject:[self existingObjectWithID:objectID error:error]];
}
}
#catch (NSException *exception) {
return nil;
}
return entities;
}
#end

How to handle memory management for Singleton pattern in Objective-C?

My code is:
static Class1 *onlyInstance;
+(Class1*) getInstance {
#synchronized([Class1 class]) {
if(onlyInstance == nil)
onlyInstance = [[Class1 alloc]init];
return onlyInstance;
}
return nil;
}
How to manage memory with sington pattern in Objective-C?
It's a singleton, you don't really need to release it at any given time, it is supposed to be around whenever you need it.
If you need to release it you can do that from within the class itself.
simply release the onlyInstance and set it to nil, so once the method that created it in the first place is called again it will recreate it.