How to implement introspection on RealBasic? - oop

RealBasic's Introspection is kinda of different than what I expected.
My intention is:
Create a MainObject from which other objects will inherit two, three methods, to simplify.
Method 1-> Returns to the child class itself all of its properties, types and values.
Method 2-> Would call Method1 and with the information, save the child Object.
So, for method 1 I thought about writing a generalised introspection which for each child class would easily return what I need for Method 2 to do its work.
Why do I want this? So I can have tens of objects knowing how to save, draw themselves without worrying too much about a modification here or there on the properties etc...
But using what RealBasic tutorials and reference offers doesn't work, since it requires me to have it happening outside the object etc... i.e.: I can easily, inside ObjectA, get ObjectB's properties, methods etc, but I want to get inside ObjectA, A's properties, not B's
Thanks in advance...

I've found out how... Very simple, create the MainClass and inside of it a simple method WhoAmI which could return an array, dictionary etc...
Dim thisClassTypeInfo As Introspection.TypeInfo = Introspection.GetType(Self)
Dim thisClassProperties() As Introspection.PropertyInfo = thisClassTypeInfo.GetProperties
Dim thisClassMethods() As Introspection.MethodInfo = thisClassTypeInfo.GetMethods
For Each myProperty As Introspection.PropertyInfo In thisClassProperties
// Then here use myProperty.Name, myProperty.Value(Self).StringValue
// or myProperty.Value(Self).anyotheroption and create a dictionary
// or array with the results and return it.
Next

Related

Smalltallk - How can I get an Array (or Collection) of the all the Instance variables in an Object (the current Instance) of a Class?

Let's say we have a Class and we instantiate it, creating an Instance of that Class. This Instance has a number of (instance)variables, defined by the class, that I need to use. I'd like to get all these (instance)variables in an Array or some Collection so I can iterate through them and set them to some value, not nil.
How can I do this?
I would like to build up on #Uko's answer because there is a more direct way to implement his idea.
The message instSize sent to a Class will answer the number of named instance variables of its instances. This, of course, would include instance variables defined in superclasses.
For instance, RemoteTempVectorNode instSize answers with 17 (wow!). Therefore you could do:
fields := (1 to: anObject class instSize) collect: [:i | anObject instVarAt: i]
and then, change them with:
values withIndexDo: [:v :i | anObject instVarAt: i put: v]
where values is the array of new values you want to inject into the object.
So, why I'm suggesting this instead of instVarNamed:? Because the latter is indirect. If you take a look at its implementation you will see that it has to first find out the name of the i-th ivar by sending instVarIndexFor:ifAbsent: to the object's class. In other words, if you need the ivar names, follow #Uko's suggestion; otherwise don't bring them into the equation because they will only add CPU cycles to your program.
One more thing. As #Sean DeNegris wisely raised in his comment to your question, it would be beneficial if you elaborated a little bit more on why you need such an unusual maneuver.
EDIT:
Now that Pharo has Flexible Object Layouts the mapping between inst var names and the class instSize is no longer valid (in classes that use the new capability.) So, the simpler approach of using just indexes would not work with generality. In fact, under the new "taxonomy" the instSize (number of fields) of an object may be different from the #numberOfInstanceVariables. I guess that the added flexibility has its costs and benefits.
You can send #allInstVarNames to a class (Behavior) to get names of all instance variables defined by it and by superclasses. If you need without superclass variables, you can use #instVarNames
Let's say that var is your variable that you need to work with. Then you can get the collection of instance variable names and iterate them.
You can use #instVarNamed:put: to set instance variable by name, and #instVarNamed: to get the value by name (in case you need).
I think that something like this may help you:
var class allInstVarNames do: [ :instVarName |
var instVarNamed: instVarName put: <yourValue>

How do I use OData4J with an unknown number of child objects?

I am trying to build a createEntity OEntity for an object that has multiple child collections within it.
I have looked over many of the example projects, but they all seem to assume that you have a known number of child objects in a collection so that you can use .inLine(“ObjectName”, ObjectOEntity1, ObjecteOEntity2…)
I have tried looking at the documentation and have not identified anything that leads me to think I can create a collection of OEntity objects that can then be added to my parent object with the inline.
The closest I found was the example listed on:
http://code.google.com/p/odata4j/source/browse/odata4j-fit/src/test/java/org/odata4j/producer/jpa/northwind/test/CreateTest.java?name=0.6
Has anyone else run into this problem?
If so how did you get around it?
You can pass in an array of OEntity objects. The core4j library that is used by odata4j contains some helper methods that can - for example - be used to get an array from an Iterable:
OEntity[] entitiesArray = Enumerable.create(entitiesIterable)
.toArray(OEntity.class);
But as there are also two variants of the properties method...
OCreateRequest<T> properties(OProperty<?>... props);
OCreateRequest<T> properties(Iterable<OProperty<?>> props);
... it might make sense to add an inline method that directly takes an Iterable<OEntity>.

VB.NET - I'm Refactoring and Could Use Some Help

I'm working with vb.net, wcf, wpf and I'm refactoring working code with the hope of being able to reduce some amount of redundancy. I have a bunch of methods that get called in several places throughout the code that only have a slight variation from each other and I would like to replace them with a single method instead.
Specifically, each of the redundant methods process an 1-d array that contain different objects I have created. There are several of these different object types each with different signatures but they have all have a "name" and "Id" property. (Also these objects don't have a shared base class but I could add that if needed.) Each of the redundant methods deal with a different one of the object types.
To refactor the code I would like to pass any of the different object arrays to a single new method that could access the "name" and "id" properties. I'm trying to write this new method in a fashion that wouldn't require me to update it if I created more objects down the road.
I've done some reading on Delegates and Generic Classes but I can't really figure out how this fits in. It would almost be as if I wanted to create a generic class that could handle each of my object types but then somehow also access the "name" and "id" propeties of the different object types.
Any help you can provide would be appretiated. Also, please keep in mind this project is written in VB.net.
Thanks
Mike
It sounds like having your object implement a common interface or have a shared base class would be best. Interfaces give you the most flexibility down the road if you ever need to pass a class to this method that must derive from some other class that does not implement the interface. However, a base class that implements the interface may also be useful just to reduce the duplicate declarations of these properties.
Public Interface IThingThatHasNameAndId 'good name not included
ReadOnly Property Name As String
ReadOnly Property Id As Integer
End Interface
Once you have the interface, you can then pass arrays of types implementing the interface as IEnumerable(Of IThingThatHasNameAndId) or make a generic method taking T() and constrain T to the interface.
Make a base class with the Name and ID properties, then you can make a method that takes in any class that derrives from that class.
Public Function TestFunction(Of t As YourBaseClass)(Byval obj As t) As Boolean
If obj.Name = "Some Name" AndAlso obj.ID = 1 Then
Return True
Else
Return False
End If
End Function

What is Method, Property and Function?

Yeah, I'm struggling with that. I cannot distinguish among them because every explanation I read is so unclear and philosophical enough. Can someone clear up these definitions for me ? Thanks guys.
These definitions apply as much to procedural-programming as oop ? Thanks.
Over time, the way people use each of these terms has changed (and will likely keep changing), but here's what they probably mean if you're reading articles written in the last decade or so:
Functions (aka subroutines) are relatively self-contained, relatively independent pieces of code that make up a larger program.
Methods are functions attached to specific classes (or instances) in object-oriented programming.
Properties are an object-oriented idiom. The term describes a one or two functions (depending on the desired program behavior) - a 'getter' that retrieves a value and a 'setter' that sets a value. By convention, properties usually don't have many side-effects. (And the side-effects they do have usually have limited scope: they may validate the item being set, notify listeners of a change, or convert an object's private data to or from a publicly-declared type.)
Function is a combination of instructions coupled together to achieve some result. It may take arguments and return result. If a function doesn't return a result it is usually called a procedure. Examples:
function drawLine(x1, y1, x2, y2):
// draws a line using Bresenham's algorithm from x1,y1 to x2,y2.
// doesn't return anything
function <number> add(a, b):
// adds a to b and returns the result as a number
return a + b
So functions are to do some particular work. For example, when you need to draw a polygon of 3 lines as a part of a vector image it is more convenient to call drawLine thrice than to put all the routine for line drawing inline.
Methods ("member functions") are similar to functions, they belongs to classes or objects and usually expresses the verbs of the objects/class. For example, an object of type Window usually would have methods open and close which do corresponding operations to the object they belong.
Properties are as in everyday language and technically are fields of objects/classes with dedicated getter/setter routines (which can be considered as methods. There are languages that don't have properties and this behavior is achieved using a private field+get/set methods.).
Field - A field is a variable of any type that is declared directly in a class or struct. Fields are members of their containing type.
Property - A property is a member that provides a flexible mechanism to read, write, or compute the value of a private field.
Method - A method is a code block containing a series of statements. In C#, every executed instruction is done so in the context of a method.
Procedure - A procedure is a code block containing a series of statements.
Function - A function is a code block containing a series of statements. That return operation result.
Function is a standalone construction like trim(), strlen(), fopen() etc.
function myAbcFunction() { ... }
Method is a function of object. It is defined in class. Property is just property of object:
class MyClass {
public $property; // Public property: $objInstance->property
protected $property2; // Protected property
public function doSth() {
// That's a method. $objInstance->doSth();
}
}
I suggest read the manual Classes and Objects chapter.
In OOP the primary structure is an object.
Method is a named action which can be applied to the object.
Property is a named value, which the object has. For example, object Human has the property 'Age'.
function is a more general thing, than a method. It is just an action, that doesn't belong to any object. But method is a function that belongs to the object.
a)Function
Refers to block of statements that perform a particular task and return a value.
b)Procedure
Refers to the building blocks of a program that do not return a value when called.
c)Method
Refers to the action that object can perform.

God object - decrease coupling to a 'master' object

I have an object called Parameters that gets tossed from method to method down and up the call tree, across package boundaries. It has about fifty state variables. Each method might use one or two variables to control its output.
I think this is a bad idea, beacuse I can't easily see what a method needs to function, or even what might happen if with a certain combination of parameters for module Y which is totally unrelated to my current module.
What are some good techniques for decreasing coupling to this god object, or ideally eliminating it ?
public void ExporterExcelParFonds(ParametresExecution parametres)
{
ApplicationExcel appExcel = null;
LogTool.Instance.ExceptionSoulevee = false;
bool inclureReferences = parametres.inclureReferences;
bool inclureBornes = parametres.inclureBornes;
DateTime dateDebut = parametres.date;
DateTime dateFin = parametres.dateFin;
try
{
LogTool.Instance.AfficherMessage(Variables.msg_GenerationRapportPortefeuilleReference);
bool fichiersPreparesAvecSucces = PreparerFichiers(parametres, Sections.exportExcelParFonds);
if (!fichiersPreparesAvecSucces)
{
parametres.afficherRapportApresGeneration = false;
LogTool.Instance.ExceptionSoulevee = true;
}
else
{
The caller would do :
PortefeuillesReference pr = new PortefeuillesReference();
pr.ExporterExcelParFonds(parametres);
First, at the risk of stating the obvious: pass the parameters which are used by the methods, rather than the god object.
This, however, might lead to some methods needing huge amounts of parameters because they call other methods, which call other methods in turn, etcetera. That was probably the inspiration for putting everything in a god object. I'll give a simplified example of such a method with too many parameters; you'll have to imagine that "too many" == 3 here :-)
public void PrintFilteredReport(
Data data, FilterCriteria criteria, ReportFormat format)
{
var filteredData = Filter(data, criteria);
PrintReport(filteredData, format);
}
So the question is, how can we reduce the amount of parameters without resorting to a god object? The answer is to get rid of procedural programming and make good use of object oriented design. Objects can use each other without needing to know the parameters that were used to initialize their collaborators:
// dataFilter service object only needs to know the criteria
var dataFilter = new DataFilter(criteria);
// report printer service object only needs to know the format
var reportPrinter = new ReportPrinter(format);
// filteredReportPrinter service object is initialized with a
// dataFilter and a reportPrinter service, but it doesn't need
// to know which parameters those are using to do their job
var filteredReportPrinter = new FilteredReportPrinter(dataFilter, reportPrinter);
Now the FilteredReportPrinter.Print method can be implemented with only one parameter:
public void Print(data)
{
var filteredData = this.dataFilter.Filter(data);
this.reportPrinter.Print(filteredData);
}
Incidentally, this sort of separation of concerns and dependency injection is good for more than just eliminating parameters. If you access collaborator objects through interfaces, then that makes your class
very flexible: you can set up FilteredReportPrinter with any filter/printer implementation you can imagine
very testable: you can pass in mock collaborators with canned responses and verify that they were used correctly in a unit test
If all your methods are using the same Parameters class then maybe it should be a member variable of a class with the relevant methods in it, then you can pass Parameters into the constructor of this class, assign it to a member variable and all your methods can use it with having to pass it as a parameter.
A good way to start refactoring this god class is by splitting it up into smaller pieces. Find groups of properties that are related and break them out into their own class.
You can then revisit the methods that depend on Parameters and see if you can replace it with one of the smaller classes you created.
Hard to give a good solution without some code samples and real world situations.
It sounds like you are not applying object-oriented (OO) principles in your design. Since you mention the word "object" I presume you are working within some sort of OO paradigm. I recommend you convert your "call tree" into objects that model the problem you are solving. A "god object" is definitely something to avoid. I think you may be missing something fundamental... If you post some code examples I may be able to answer in more detail.
Query each client for their required parameters and inject them?
Example: each "object" that requires "parameters" is a "Client". Each "Client" exposes an interface through which a "Configuration Agent" queries the Client for its required parameters. The Configuration Agent then "injects" the parameters (and only those required by a Client).
For the parameters that dictate behavior, one can instantiate an object that exhibits the configured behavior. Then client classes simply use the instantiated object - neither the client nor the service have to know what the value of the parameter is. For instance for a parameter that tells where to read data from, have the FlatFileReader, XMLFileReader and DatabaseReader all inherit the same base class (or implement the same interface). Instantiate one of them base on the value of the parameter, then clients of the reader class just ask for data to the instantiated reader object without knowing if the data come from a file or from the DB.
To start you can break your big ParametresExecution class into several classes, one per package, which only hold the parameters for the package.
Another direction could be to pass the ParametresExecution object at construction time. You won't have to pass it around at every function call.
(I am assuming this is within a Java or .NET environment) Convert the class into a singleton. Add a static method called "getInstance()" or something similar to call to get the name-value bundle (and stop "tramping" it around -- see Ch. 10 of "Code Complete" book).
Now the hard part. Presumably, this is within a web app or some other non batch/single-thread environment. So, to get access to the right instance when the object is not really a true singleton, you have to hide selection logic inside of the static accessor.
In java, you can set up a "thread local" reference, and initialize it when each request or sub-task starts. Then, code the accessor in terms of that thread-local. I don't know if something analogous exists in .NET, but you can always fake it with a Dictionary (Hash, Map) which uses the current thread instance as the key.
It's a start... (there's always decomposition of the blob itself, but I built a framework that has a very similar semi-global value-store within it)