MongoDB embedding vs SQL foreign keys? - sql

Are there any particular advantages to MongoDB's ability to embed objects within a document, compared to SQL's use of foreign keys for the same logic?
It seems to me that the only advantage is ease of use (and perhaps performance?), and even that seems like it could be easily abstracted away (e.g. Django seems to handle SQL's foreign keys pretty intuitively).

This boils down to a classic question of whether to embed or not.
Here are a few links to get started before I explain some more:
Where should I put activities timeline in mongodb, embedded in user or separately?
MongoDB schema design -- Choose two collection approach or embedded document
MongoDB schema for storing user location history
Now to answer more specifically.
You must remember the server-side usage of foreign keys in SQL: JOINs. Embedding is a single round trip to get all the data you need in a single document however Joins are not, they are infact two selections based upon a range and then merged to omit duplicates (with significant overhead on some data sets).
So the use of foreign keys is not totally app dependant, it is also server and database dependant.
That being said some people misunderstand embedding in MongoDB and try and make all their data fit into one document. Unfortunately this is re-inforced by the common knowledge that you should always try to embed everything. The links and more will provide some useful guides on this.
Now that we cleared some things up the main pros of embedding over JOINs are:
Single round trip
Easy to update the document in a lot of cases, unless you embed many levels deep
Can keep entity data with the entity it is related to
However embedding has a few flaws:
The document must be paged in to get it's values, this can be problematic on larger documents
Subdocuments are designed to be unique to that entity that do not require advanced querying so you normally would not get two separate entities that are related together, i.e. a post could embed comments but a user probably wouldn't embed posts due to the query needs.
Nesting more than 3 levels deep could effect your ability to use things such as the atomic lock.
So when used right MongoDBs embedding can become a huge power over SQL Joins but you must understand when to use it right.

The core strength of Mongo is in its document-view of data, and naturally this can be extended to a "POCO" view of data. Mongo clients like the NoRM Project in .NET will seem astonishingly similar to experienced Fluent NHibernate users, and this is no accident - your POCO data models are simply serialized to BSON and saved in Mongo 1:1. No mappings required.
Overall, the biggest difference between these two technologies is the model and how developers have to think about their data. Mongo is better suited to rapid application development.

Related

Is it better to use entity-arrtibute-value model over storing various different product in single description text column? [duplicate]

It is safe to say that the EAV/CR database model is bad. That said,
Question: What database model, technique, or pattern should be used to deal with "classes" of attributes describing e-commerce products which can be changed at run time?
In a good E-commerce database, you will store classes of options (like TV resolution then have a resolution for each TV, but the next product may not be a TV and not have "TV resolution"). How do you store them, search efficiently, and allow your users to setup product types with variable fields describing their products? If the search engine finds that customers typically search for TVs based on console depth, you could add console depth to your fields, then add a single depth for each tv product type at run time.
There is a nice common feature among good e-commerce apps where they show a set of products, then have "drill down" side menus where you can see "TV Resolution" as a header, and the top five most common TV Resolutions for the found set. You click one and it only shows TVs of that resolution, allowing you to further drill down by selecting other categories on the side menu. These options would be the dynamic product attributes added at run time.
Further discussion:
So long story short, are there any links out on the Internet or model descriptions that could "academically" fix the following setup? I thank Noel Kennedy for suggesting a category table, but the need may be greater than that. I describe it a different way below, trying to highlight the significance. I may need a viewpoint correction to solve the problem, or I may need to go deeper in to the EAV/CR.
Love the positive response to the EAV/CR model. My fellow developers all say what Jeffrey Kemp touched on below: "new entities must be modeled and designed by a professional" (taken out of context, read his response below). The problem is:
entities add and remove attributes weekly (search keywords dictate future attributes)
new entities arrive weekly (products are assembled from parts)
old entities go away weekly (archived, less popular, seasonal)
The customer wants to add attributes to the products for two reasons:
department / keyword search / comparison chart between like products
consumer product configuration before checkout
The attributes must have significance, not just a keyword search. If they want to compare all cakes that have a "whipped cream frosting", they can click cakes, click birthday theme, click whipped cream frosting, then check all cakes that are interesting knowing they all have whipped cream frosting. This is not specific to cakes, just an example.
There's a few general pros and cons I can think of, there are situations where one is better than the other:
Option 1, EAV Model:
Pro: less time to design and develop a simple application
Pro: new entities easy to add (might even
be added by users?)
Pro: "generic" interface components
Con: complex code required to validate simple data types
Con: much more complex SQL for simple
reports
Con: complex reports can become almost
impossible
Con: poor performance for large data sets
Option 2, Modelling each entity separately:
Con: more time required to gather
requirements and design
Con: new entities must be modelled and
designed by a professional
Con: custom interface components for each
entity
Pro: data type constraints and validation simple to implement
Pro: SQL is easy to write, easy to
understand and debug
Pro: even the most complex reports are relatively simple
Pro: best performance for large data sets
Option 3, Combination (model entities "properly", but add "extensions" for custom attributes for some/all entities)
Pro/Con: more time required to gather requirements and design than option 1 but perhaps not as much as option 2 *
Con: new entities must be modelled and designed by a professional
Pro: new attributes might be easily added later on
Con: complex code required to validate simple data types (for the custom attributes)
Con: custom interface components still required, but generic interface components may be possible for the custom attributes
Con: SQL becomes complex as soon as any custom attribute is included in a report
Con: good performance generally, unless you start need to search by or report by the custom attributes
* I'm not sure if Option 3 would necessarily save any time in the design phase.
Personally I would lean toward option 2, and avoid EAV wherever possible. However, for some scenarios the users need the flexibility that comes with EAV; but this comes with a great cost.
It is safe to say that the EAV/CR database model is bad.
No, it's not. It's just that they're an inefficient usage of relational databases. A purely key/value store works great with this model.
Now, to your real question: How to store various attributes and keep them searchable?
Just use EAV. In your case it would be a single extra table. index it on both attribute name and value, most RDBMs would use prefix-compression to on the attribute name repetitions, making it really fast and compact.
EAV/CR gets ugly when you use it to replace 'real' fields. As with every tool, overusing it is 'bad', and gives it a bad image.
// At this point, I'd like to take a moment to speak to you about the Magento/Adobe PSD format.
// Magento/PSD is not a good ecommerce platform/format. Magento/PSD is not even a bad ecommerce platform/format. Calling it such would be an
// insult to other bad ecommerce platform/formats, such as Zencart or OsCommerce. No, Magento/PSD is an abysmal ecommerce platform/format. Having
// worked on this code for several weeks now, my hate for Magento/PSD has grown to a raging fire
// that burns with the fierce passion of a million suns.
http://code.google.com/p/xee/source/browse/trunk/XeePhotoshopLoader.m?spec=svn28&r=11#107
The internal models are wacky at best, like someone put the schema into a boggle game, sealed that and put it in a paint shacker...
Real world: I'm working on a midware fulfilment app and here are one the queries to get address information.
CREATE OR REPLACE VIEW sales_flat_addresses AS
SELECT sales_order_entity.parent_id AS order_id,
sales_order_entity.entity_id,
CONCAT(CONCAT(UCASE(MID(sales_order_entity_varchar.value,1,1)),MID(sales_order_entity_varchar.value,2)), "Address") as type,
GROUP_CONCAT(
CONCAT( eav_attribute.attribute_code," ::::: ", sales_order_entity_varchar.value )
ORDER BY sales_order_entity_varchar.value DESC
SEPARATOR '!!!!!'
) as data
FROM sales_order_entity
INNER JOIN sales_order_entity_varchar ON sales_order_entity_varchar.entity_id = sales_order_entity.entity_id
INNER JOIN eav_attribute ON eav_attribute.attribute_id = sales_order_entity_varchar.attribute_id
AND sales_order_entity.entity_type_id =12
GROUP BY sales_order_entity.entity_id
ORDER BY eav_attribute.attribute_code = 'address_type'
Exacts address information for an order, lazily
--
Summary: Only use Magento if:
You are being given large sacks of money
You must
Enjoy pain
I'm surprised nobody mentioned NoSQL databases.
I've never practiced NoSQL in a production context (just tested MongoDB and was impressed) but the whole point of NoSQL is being able to save items with varying attributes in the same "document".
Where performance is not a major requirement, as in an ETL type of application, EAV has another distinct advantage: differential saves.
I've implemented a number of applications where an over-arching requirement was the ability to see the history of a domain object from its first "version" to it's current state. If that domain object has a large number of attributes, that means each change requires a new row be inserted into it's corresponding table (not an update because the history would be lost, but an insert). Let's say this domain object is a Person, and I have 500k Persons to track with an average of 100+ changes over the Persons life-cycle to various attributes. Couple that with the fact that rare is the application that has only 1 major domain object and you'll quickly surmize that the size of the database would quickly grow out of control.
An easy solution is to save only the differential changes to the major domain objects rather than repeatedly saving redundant information.
All models change over time to reflect new business needs. Period. Using EAV is but one of the tools in our box to use; but it should never be automatically classified as "bad".
I'm struggling with the same issue. It may be interesting for you to check out the following discussion on two existing ecommerce solutions: Magento (EAV) and Joomla (regular relational structure):
https://forum.virtuemart.net/index.php?topic=58686.0
It seems, that Magento's EAV performance is a real showstopper.
That's why I'm leaning towards a normalized structure. To overcome the lack of flexibility I'm thinking about adding some separate data dictionary in the future (XML or separate DB tables) that could be edited, and based on that, application code for displaying and comparing product categories with new attributes set would be generated, together with SQL scripts.
Such architecture seems to be the sweetspot in this case - flexible and performant at the same time.
The problem could be frequent use of ALTER TABLE in live environment. I'm using Postgres, so its MVCC and transactional DDL will hopefully ease the pain.
I still vote for modeling at the lowest-meaningful atomic-level for EAV. Let standards, technologies and applications that gear toward certain user community to decide content models, repetition needs of attributes, grains, etc.
If it's just about the product catalog attributes and hence validation requirements for those attributes are rather limited, the only real downside to EAV is query performance and even that is only a problem when your query deals with multiple "things" (products) with attributes, the performance for the query "give me all attributes for the product with id 234" while not optimal is still plenty fast.
One solution is to use the SQL database / EAV model only for the admin / edit side of the product catalog and have some process that denormalizes the products into something that makes it searchable. Since you already have attributes and hence it's rather likely that you want faceting, this something could be Solr or ElasticSearch. This approach avoids basically all downsides to the EAV model and the added complexity is limited to serializing a complete product to JSON on update.
EAV has many drawbacks:
Performance degradation over time
Once the amount of data in the application grows beyond a certain size, the retrieval and manipulation of that data is likely to become less and less efficient.
The SQL queries are very complex and difficult to write.
Data Integrity problems.
You can't define foreign keys for all the fields needed.
You have to define and maintain your own metadata.
I have a slightly different problem: instead of many attributes with sparse values (which is possibly a good reason to use EAV), I want to store something more like a spreadsheet. The columns in the sheet can change, but within a sheet all cells will contain data (not sparse).
I made a small set of tests to benchmark two designs: one using EAV, and the other using a Postgres ARRAY to store cell data.
EAV
Array
Both schemas have indexes on appropriate columns, and the indexes are used by the planner.
It turned out the array-based schema was an order of magnitude faster for both inserts and queries. From quick tests, it seemed that both scaled linearly. The tests aren't very thorough, though. Suggestions and forks welcome - they're under an MIT licence.

What design patterns for marshalling JSON APIs to/from SQL

I'm working on a first JSON-RPC/JSON-REST API. One of the conveniences of JSON is that it can easily represent structured data (a user may have multiple email addresses, multiple addresses), etc...
For example, the Facebook Graph API nicely represents the kind of thing that's handy to return as JSON objects:
https://fbcdn-dragon-a.akamaihd.net/hphotos-ak-ash3/851559_339008529558010_1864655268_n.png
However, in implementing an API such as this with a relational database, we end up shattering structured objects into very many tables (at least one for each list in the JSON object), and un-shattering them when responding to requests. So:
requires a lot of modelling (separate models for JSON object and SQL tables).
inconsistencies creep in between the models: e.g. user_id (in SQL) vs. userID (in JSON)
marshaling stuff between one model and the other is very time consuming (tedious, error-prone and pointless boilerplate).
What design-patterns exist to help in this situation?
I'm not sure you are looking for design patterns. I would look for tools that handle this better.
I assume that you want to be able to query these objects, and not just store them in TEXT fields. Many databases support XML fairly well, so I would convert the JSON to XML (with a library) and then store that in the database.
You may also want to consider a JSON document based database. That will definitely get you where you want to go.
If you don't need to be able to query these, or only need to query a very small subset of fields, just store the objects as text, and extract those query-able fields into actual columns. This way you don't need to touch the majority of the data, but you can still query the few fields you care about. (Plus you can index them for speedier lookup.)
I have always chosen to implement this functionality in a facade pattern. Since the point of the facade is to simplify (abstract) an underlying complexity as a boundary between two or more systems, it seemed like the perfect place to handle this.
I realize however that this does not quite answer the question. I am talking about the container for the marshalling while the question is about how to better manage the contents (the code that does the job).
My approach here is somewhat old fashioned, but since this an old question maybe that’s okay. I employ (as much as possible) stored procedures in the dB. This promotes better encapsulation than one typically finds with a code layer outside of the dB that has to “know about” dB structure. What inevitably happens in the latter case is that more than one system will be written to do this (one large company I worked at had at least 6 competing ESBs) and there will be conflicts. Also, usually the stored procedure scripting will benefit from some sort of IDE that will helps maintain contextual awareness of the dB structure.
So this approach - even though it is not a pattern per se - makes managing the ORM a lot easier.

Normalisation and multi-valued fields

I'm having a problem with my students using multi-valued fields in access and getting confused about normalisation as a result.
Here is what I can make out. Given a 1-to-many relationship, e.g.
Articles Comments
-------- --------
artID{PK} commID{PK}
text text
artID{FK}
Access makes it possible to store this information into what appears to be one table, something like
Articles
--------
artID{PK}
text
comment
+ value
"value" referring to multiple comment values for the comment "column", which access actually stores as a separate table. The specifics of how the values are stored - table, its PK and FK - is completely hidden, but it is possible to query the multi-valued field, e.g. in the example above with the query
INSERT INTO article( [comment].Value )
VALUES ('thank you')
WHERE artID = 1;
But the query doesn't quite reveal the underlying structure of the hidden table implementing the multi-valued field.
Given this (disaster, in my view) - my problem is how to help newcomers to database design and normalisation understand what Access is offering them, why it may not be helpful, and that it is not a reason to ignore the basics of the relational model. More specifically:
Are there better ways, besides queries as above, to reveal the structure behind multi-valued fields?
Are there good examples of where the multi-valued field is not good enough, and shows the advantage of normalising explicitly?
Are there straightforward ways to obtain the multi-select visual output of Access multi-values, but based on separate, explicit tables?
Thanks!
I cannot give you advice in using this feature, because I never used it; however, I can give you reasons not to use it.
I want to have full control on what I'm doing. This is not the case for multi-valued fields, therefore I don't use them.
This feature is not expandable. What if you want to add a date field to your comments, for instance?
It is sometimes necessary to upsize an Access (backend) database to a "big" database (SQL Server, Oracle). These Databases don't offer such a feature. It is often the customer who decides which database has to be used. Recently I had to migrate an Access application (frontend) using an Oracle backend to a SQL-Server backend because my client decided to drop his Oracle server. Therefore it is a good idea to restrict yourself to use only common features.
For common tasks like editing lookup tables I created generic forms. My existing solutions will not work with multi-valued fields.
I have a (self-made) tool that synchronizes changes in the structure of the database on my developer’s site with the database on the client’s site. This tool cannot deal with multi-valued fields.
I have tools for the security management that can grant SELECT, INSERT, UPDATE and DELETE rights on tables or revoke them. Again, the management tool does not work with multi-valued fields.
Having a separate table for the comments allows you to quickly inspect all the comments (by opening the table). You cannot do this with multi-valued fields.
You will not see the 1 to n relation between the articles and the comments in a database diagram.
With a separate table you can choose whether you want to cascade deletes to the details table or not. If you don't, you will not be able to delete an article as long as there are comments attached to it. This can be desirable, if you want to protect the comments from being deleted inadvertently.
It is important to realize the difference between physical and logical relationships. Today the whole internet and web services (SOAP) quite much realizes on a data format that is multi-value in nature.
When you represent multi-value data with a relational database (such as Access), then behind the scenes you are using a traditional (and legitimate) relation. I cannot stress that as such, then the use of multi-value columns in Access is in fact a LEGITIMATE relational model.
The fact that table is not exposed does not negate this issue. In fact, if you represent an invoice (master record, and repeating details) as a XML data cube, then we see two things:
1) you can build and represent that invoice with a relational database like Access
2) such a relational data model that is normalized can ALSO be represented as a SINGLE xml string.
3) deleting the XML record (or string) means that cascade delete of the child rows (invoice details) MUST occur.
So while it is true that Multi-Value fields been added to Access to deal with SharePoint, it is MOST important to realize that such data can be mapped to a relational database (if you could not do this, then Access could not consume that XML data using relational database tables as ACCESS CURRENTLY DOES RIGHT NOW).
And with the web such as XML, and SharePoint then the need to consume and manage and utilize such data is not only widespread, but is in fact a basic staple of the internet.
As more and more data becomes of a complex nature, we find the requirement for multi-value data exploding in use. Anyone who used that so called "fad" the internet is thus relying and using data that is in fact VERY OFTEN XML and is multi-value (complex) in nature.
As long as the logical (not physical) relational data model is kept, then use of multi-value columns to represent such data is possible and this is exactly what Access is doing (it is mapping the relational data model to a complex model). Note that the complex (xml) data model does NOT necessary have to be relational in nature. However, if you ARE going to map such data to Access then the complex multi-value model MUST CONFORM TO A RELATIONAL data model.
This is EXACTLY what is occurring in Access.
The fact that such a correct and legitimate math relational model is not exposed is of little issue here. Are we to suggest that because Excel does not expose the binary codes used then users will never learn about computers? Or perhaps we all must program in assembler so we all correctly learn how computers works.
At the end of the day, who cares and why does this matter? The fact that people drive automatic cars today does not toss out the concept that they are using different gears to operate that car. The idea that we shut down all of society because someone is going to drive an automatic car or in this case use complex data would be galactic stupid on our part.
So keep in mind that extensions to SQL do exist in Access to query the multi-value data, but as well pointed out here those underlying tables are not exposed. However, as noted, exposing such tables would STILL REQUIRE one to not change or mess with cascade delete since that feature is required TO MAINTAIN A INTERSECTION OF FEATURES and a CORRECT MATH relational model between the complex data model (xml) and that of using two related tables to represent such data.
In other words, you can use related tables to represent the complex data model IF YOU REMOVE the ability of users to play with the referential integrity options. The RI options MUST remain as set in those hidden tables else such data will not be able to make the trip BACK to the XML or complex data model of which it was consumed from.
As noted, in regards to users being taught how gasoline reacts with oxygen for that of learning to drive a car, or using a word processor and being forced to learn a relational model and expose the underlying tables makes little sense here.
However, the points made here in regards to such tables being exposed are legitimate concerns.
The REAL problem is SQL server and Oracle etc. cannot consume or represent that complex data WHILE ACCESS CAN CONSUME such data.
As noted, the complex data ship has LONG ago sailed! XML, soap, and the basic technologies of the internet are based on this complex data model.
In effect, SQL server, Oracle and most databases cannot that consume this multi-value data represent it without users having to create and model such data in a relational fashion is a BIG shortcoming of SQL server etc.
Access stands alone in this ability to consume this data.
So, for anyone who used a smartphone, iPad or the web, you are using basic technologies that are built around using complex data, something that Access now allows.
It is likely that the rest of the industry will have to follow suit given that more and more data is complex in nature. If the database industry does not change, then the mainstream traditional relational database system will NOT be the resting place of such data.
A trend away from storing data in related tables is occurring at a rapid pace right now and products like SharePoint, or even Google docs is proof of this concept. So Access is only reacting to market pressures and it is likely that other database vendors will have to follow suit or simply give up on being part of the "fad" called the internet.
XML and complex data structures are STAPLE and fact of our industry right now – this is not an issue we all should run away from, but in fact embrace.
Albert D. Kallal (Access MVP)
Edmonton, Alberta Canada
kallal#msn.com
The technical discussion is interesting. I think the real problem lies in student understanding. Because it is available in Access students will use it, and initially it will probably provide a simple solution to some design problems. The negatives will occur later when they try and use the data. Maybe a simple example demonstrating the problems would persuade some students to avoid using multi-valued fields ? Maybe an example of storing the data in another, more usable format would help ?
Good luck !
Peter Bullard
MS Access does a great job of simplifying database management and abstracting out a lot of complexity. This however makes the learning of dbms concepts a bit difficult. Have you tried using other 'standard' dbms tools like MySQL (or even sqlite). From a learning perspective they may be better.
I know this post is old. But, it's not quite the same as every other post I've seen on this topic. This one has someone making a good case for using Multi Valued Fields...
As someone who is trying who is still trying very hard to get their head around Access, I find the discussion for and against using the Multi Valued Fields incredibly frustrating.
I'm trying to sort through it all, but if everyone is so against them, what is an alternative method? It seems that in every search result I find everyone is either telling you how to use Multi Valued Fields and Controls or telling you how horrible and what a mistake they are. Many people refer to an alternative to them, but nobody says "Here's an example". I'm here to learn about these things. And while I know that this is a simpler concept for a lot of people in these forums, I could really use some examples to take a look at.
I'm at a point where I have to decide which way to go. It would be wonderful to compare examples of using Multi Valued Fields and alternatives and using a control to select multiple values.
Or am I wrong and the functionality of a combobox where you can select multiple items is only available through Access?
I want to address the last of your questions first. There is a way of providing a visual presentation of a parent child relationship. It's called subforms. If you get help about subforms in Access, it will explain the concept.
I have used subforms in a project where I wanted to display the transaction header in a form and the transaction details in a subform. There is nothing to hinder this construct even when the data is stored in two normalized tables.
Of course, this affects the screen, not the database. That's the whole point. Normalization is relevant to storage and retrieval, not to other uses of data.

I need advise choosing a NoSQL database for a project with a lot of minute related information

I am currently working on a private project that is going to use Google's GTFS spec to get information about 100s of Public Transit agencies, their routers, stations, times, and other related information. I will be getting my information from here and the google code wiki page with similar info. There is a lot of data and its partitioned into multiple CSV formatted text files. These can be huge, some ranging in 80-100mb of data.
With the data I have, I want to translate it all into a nice solid database that I can build layers on top of to use for my project. I will be using GPS positioning to pinpoint a location and all surrounding stations/stops.
My goal is to access all the information for all these stops and stations with as few calls as possible, while keeping datasets small for queried results.
I am currently leaning towards MongoDB and CouchDB for their GeoSpatial support that can really optimize getting small datasets. But I also need to be sure to link all the stops on a route because I will be propagating information along a transit route for that line. In this case I have found that I can benefit from a Graph DB like Neo4j and OrientDB, but from what I know, neither has GeoSpatial support nor am I 100% sure that a Graph DB would be what I need.
The perfect solution might not exist, but I come here asking for help on finding the best possible for my situation. I know I will possible have to work around limitations of whatever I choose, but I want to at least have done my research and know that its the best I can get at the moment.
I have also been suggested to splinter the data into multiple DBs, but that could get very messy because all the information is very tightly interconnected through IDs.
Any help would be appreciated.
Obviously a graph database fits 100% your problem. My advice here is to go for some geo spatial module over neo4j or orientdb, althought you have some others free and open source implementation.
I think the best one right now, with all the geo spatial thing implemented is neo4j-spatial package. But as far as I know, you can also reproduce most of the geo spatial thing on your own if necessary.
BTW talking about splitting, if the amount of data/queries will be high, I strongly recommend you to share the load and think the model in this terms. Sure you can do something.
I've used Mongo's GeoSpatial features and can offer some guidance if you need help with a C# or javascript implementation - I would recommend it to start because it's super easy to use. I'm learning all about Neo4j right now and I am working on a hybrid approach that takes advantage of both Mongo and Neo4j. You might want to cross reference the documents in Mongo to the nodes in Neo4j using the Mongo object id.
For my hybrid implementation, I'm storing profiles and any other large static data in Mongo. In Neo4j, I'm storing relationships like friend and friend-of-friend. If I wanted to analyze movies two friends are most likely to want to watch together (or really any other relationship I hadn't thought of initially), by keeping that object id reference I can simply add some code instructing each node go out and grab a list of movies from the related profile.
Added 2011-02-12:
Just wanted to follow up on this "hybrid" idea as I created prototypes for and implemented a few more solutions recently where I ended up using more than one database. Martin Fowler refers to this as "Polyglot Persistence."
I'm finding that I am often using a combination of a relational database, document database and a graph database (in my case this is generally SQL Server, MongoDB and Neo4j). Since the question is related to data modeling as much as it is to geospatial, I thought I would touch on that here:
I've used Neo4j for site organization (similar to the idea of hypermedia in the REST model), modeling social data and building recommendations (often based on social data). As a result, I will generally model this part of the application before I begin programming.
I often end up using MongoDB for prototyping the rest of the application because it provides such a simple persistence mechanism. I like to start developing an application with the user interface, so this ends up working well.
When I start moving entities from Mongo to SQL Server, the context is usually important - for instance, if I have an application that allows users to build daily reports based on periodically collected data, it may make sense to run a procedure that builds those reports each night and stores daily report objects in Mongo that may be combined into larger aggregate reports as needed (obviously this doesn't consider a few special cases, but that is not relevant to the point)...on the other hand, if users need to pull on-demand reports limited to very specific time periods, it may make sense to keep everything in SQL server and build those reports as needed.
That said, and this deserves more intense thought, here are some considerations that may be helpful:
I generally try to store entities in a relational database if I find that pulling an entity from the database [in other words(in the context of a relational database) - querying data from the database that provides the data required to generate an entity or list of entities that fulfills the requested parameters] does not require significant processing (multiple joins, for instance)
Do you require ACID compliance(aside:if you have a graph problem, you can leverage Neo4j for this)? There are document databases with ACID compliance, but there's a reason Mongo is not: What does MongoDB not being ACID compliant really mean?
One use of Mongo I saw in the wild that I thought was worthy of mention - Hadoop was being used to compute massive hash tables that were then stored in Mongo. I believe a similar approach is used by TripAdvisor for user based customization in terms of targeting offers, advertising, etc..
NoSQL only exists because MySQL users assume that all databases have their performance problems when their database grows large and/or becomes complex.
I suggest that you use PostGIS. You can use the same database for the rest of your data needs as well.
http://postgis.refractions.net/

Flexible Persistence Layer

I am designing an ASP.NET MVC 2 application. Currently I am leveraging Entity Framework 4 with switchable SQLServer and MySQL datastores.
A requirement recently surfaced for the application to allow user-defined models/entities to be manipulated. Now I'm unsure if a SQL/relational database is appropriate at all; instead of adding/removing 'Employee' objects, for example, the user should be able to define an 'Employee' and what properties it has - effectively adding/removing tables and columns on the fly, at runtime.
Is SQL unsuitable for this? Are there options which allow me to stay within a relational database structure and still satisfy this requirement? Within the Entity Framework, can I regenerate .edmx files 'on the fly' or are there alternatives which achieve similar goals?
I've looked briefly at other options like 'document-based' dbs and 'schema-free/no-sql' dbs, such as MongoDb. I've also looked at some serialization formats such as Google's Protocol Buffers, JSON, and XML. From your experience, are any of these particularly suitable for this purpose? Serialization performance is not a big concern.
The application is in its infancy and I have no time constraints. Essentially I am free to rewrite it as I please, so if scrapping and starting over is a better alternative, I am very open to this. What are your suggestions? Thanks in advance!
Before looking at options I'd suggest (if you have not already done it :-) that you need to get a clear definition of exactly what users will be able to define. Once you have that you can then deduce an idea of the level of flexibility needed and therefore the type of data store needed to do the job.
One other word of advice would be that if they clients demand to be able to create anything any way they want - walk away. I've dealt with clients and users at all levels and one thing that is guaranteed is is that users have no interest if the effective and efficient design of data and therefore will always reduce the data to a pile of poo through shear neglect.
You need to set some boundaries so that the data store behind the system maintains some integrity.