Meshes in 3DS Max does not have same number of vertices - blender

I have two meshes with same vertices number in 3DS Max, but when I export it, both have not the same vertices number.
- I have to create a "ProOptimizer" modifier, to get the same number of vertices in all meshes.
- I export it as ".Obj", and uncheck all parameters, except textures, to keep it.
- I import it from Blender and I export it as ".FBX".
If I export it directly from 3DS Max, the vertices number is very different between all meshes, I do not understand.
How do I get the same vertices?
Can anyone help me please? Thank you very much.

Do both meshes have same smoothing groups applied to the same respective triangles? And are the UV mapping similar?
Both normals (smoothing groups), and UV coordinate distribution can affect how many times a single vertex need to be split in order to render correctly, or get exported to a specific format. For example one vertex can have many normals (one for each neighboring triangle, e.g. in a box), forcing the vertex to be counted several times. Or on the contrary a vertex can have a single normal, making all neighboring faces appearing "smoothed" around the vertex.

Related

When loading a model with Assimp how can I get the Vertices that correspond to my materials (C++)

So what I want to do is render each material 1 at a time. Which means that each Material will have it's own vertices. Is there some kind of function within Assimp when I process a mesh that will tell me which material the vertices belong to.
Of course I would put the position, the normal and the texCoord in the vertex and I need the induces.
There is no query to get these meshes implemented in Asset-Importer-Lib right now. But you can write this easily by yourself:
Import your model
Check whether there are any meshes loaded
Loop over all meshes stored in aiScene
Sort them for meshes with the same material index
Loop over all vertices of the list of meshes.
I wrote a blog-post about that: Batch-Rendering for Assimp-Scene

Does CGAL 2D Conforming Mesh support fix points?

In my meshing application I will have to specify fix points within a domain. The idea is that, the fix points must also be the element points after the domain is being meshed.
Furthermore, the elements around the fix points should be more dense. The general concept is that for the fix points, there should exist a radius r around those points, such that the mesh size inside r is of different sizes than outside of the r. The mesh sizes inside and outside of the r should be specifiable.
Are these two things doable in CGAL 2D Mesh algorithm?
Using your wording, all the input point of the initial constrained Delaunay triangulation will be fix points, because the 2D mesh generator only insert new points in the triangulation: it never removes any point.
As for the density, you can copy, paste, and modify a criteria class, such as CGAL::Delaunay_mesh_size_criteria_2<CDT> so that the local size upper bound is smaller around the fix points.
Now, the difficulty is how to implement that new size policy. Your criteria class could store a const reference to another Delaunay_triangulation_2, that contains only the fixed points you want. Then, for each triangle query, you can call nearest_vertex and then actually check if the distance between the query point is smaller that the radius bound of your circles. For a triangle, you can either verify that for only its barycenter, or for all three points of the triangle. Then, according to the result of that/those query(s), you can modify the size bound, in the code of your copy of CGAL::Delaunay_mesh_size_criteria_2<CDT>.
Yes, no points will be removed from the triangulation by the mesher.
Note however that if you insert points too close to a constraint this will induce a refinement of the constraint while it is not Gabriel.

Computing Minkowski Difference For Circles and Convex Polygons

I'm needing to implement a Minkowski sum function that can return the Minkowski sum of either 2 circles, 2 convex polygons or a circle and a convex polygon. I found this thread that explained how to do this for convex polygons, but I'm not sure how to do this for a circle and polygon. Also, how would I even represent the answer?! I'd like the algorithm to run in O(n) time but beggars can't be choosers.
Circle is trivial -- just add the center points, and add the radii. Circle + ConvexPoly is nearly as simple: move each segment perpendicularly outward by the circle radius, and connect adjacent segments with circular arcs centered at the original poly vertices. Translate the whole by the circle center point.
As for how you represent the answer: Well, it depends on what you want to do with it. You could convert it to a NURBS if you just want to draw it with a vector drawing library. You could approximate the circular arcs with polylines if you just want a polygonal approximation. Or you might store it as is -- "this polygon, expanded by such-and-such a radius". That would be the best choice for things like raycasting, for instance. Or as a compromise, you could connect adjacent segments linearly instead of with circular arcs, and store it as the union of the (new) convex polygon and a list of circles at the vertices.
Oh, about ConvexPoly + ConvexPoly. That's the trickiest one, but still straightforward. The basic idea is that you take the list of segment vectors for each polygon (starting from some particular extremal point, like the point on each poly with the lowest X coordinate), then merge the two lists together, keeping it sorted by angle. Sum the two points you started with, then apply each vector from the merged vector list to produce the other points.

Reconstruct surface from 3D triangular meshes

I have a 3D model, which consists of the 3D triangular meshes. I want to partition the meshes into different groups. Each group represents a surface, such as a planar face, cylindrical surface. This is something like surface recognition/reconstruction.
The input is a set of 3D triangular meshes. The output is the mesh segmentations per surface.
Is there any library meets my requirement?
If you want to go into lots of mesh processing, then the point cloud library is a good idea, but I'd also suggest CGAL: http://www.cgal.org for more algorithms and loads of structures aimed at meshes.
Lastly, the problem you describe is most easily solved on your own:
enumerate all vertices
enumerate all polygons
create an array of ints with the size of the number of vertices in your "big" mesh, initialize with 0.
create an array of ints with the size of the number of polygons in your "big" mesh, initialize with 0.
initialize a counter to 0
for each polygon in your mesh, look at its vertices and the value that each has in the array.
if the values for each vertex are zero, increase counter and assign to each of the values in the vertex array and polygon array correspondingly.
if not, relabel all vertices and polygons with a higher number to the smallest, non-zero number.
The relabeling can be done quickly with a look up table.
This might save you lots of issues interfacing your code to some library you're not really interested in.
You should have a look at the PCL library, it has all these features and much more: http://pointclouds.org/

How to depict multidimentional vectors on two-dinesional plot?

I have a set of vectors in multidimensional space (may be several thousands of dimensions). In this space, I can calculate distance between 2 vectors (as a cosine of the angle between them, if it matters). What I want is to visualize these vectors keeping the distance. That is, if vector a is closer to vector b than to vector c in multidimensional space, it also must be closer to it on 2-dimensional plot. Is there any kind of diagram that can clearly depict it?
I don't think so. Imagine any twodimensional picture of a tetrahedron. There is no way of depicting the four vertices in two dimensions with equal distances from each other. So you will have a hard time trying to depict more than three n-dimensional vectors in 2 dimensions conserving their mutual distances.
(But right now I can't think of a rigorous proof.)
Update:
Ok, second idea, maybe it's dumb: If you try and find clusters of closer associated objects/texts, then calculate the center or mean vector of each cluster. Then you can reduce the problem space. At first find a 2D composition of the clusters that preserves their relative distances. Then insert the primary vectors, only accounting for their relative distances within a cluster and their distance to the center of to two or three closest clusters.
This approach will be ok for a large number of vectors. But it will not be accurate in that there always will be somewhat similar vectors ending up at distant places.