The if statement in this function, works without vectorization?
def K(T0,z,v):
for i in range(len(T0)-1):
GDens[i+1]=(Dens[i+1]-Dens[i])/(z[i+1]-z[i])
for i in range(len(T0)):
B[i]=(((ws/Dens0)*k0)**2)*np.exp(-2*alfa*z[i])-((g/Dens0)*GDens[i])
for i in range(len(T0)):
if B[i]>0:
kz[i]=((0.05*h1)**2)*np.sqrt(B[i])+kmin
else:
kz[i]=kmin
kfinal=kz
return kfinal
I'm not sure what you're asking but this is how you can vectorize this code:
GDens = np.zeros_like(z)
GDens[:-1] = (Dens[1:] - Dens[:-1]) / (z[1:] - z[:-1])
B = (((ws/Dens0)*k0)**2)*np.exp(-2*alfa*z)-((g/Dens0)*GDens)
kz = np.where(B > 0, ((0.05*h1)**2)*np.sqrt(B)+kmin, kmin)
Related
I want to create custom activation function in TF2. The math is like this:
def sqrt_activation(x):
if x >= 0:
return tf.math.sqrt(x)
else:
return -tf.math.sqrt(-x)
The problem is that I can't compare x with 0 since x is a tensor. How to achieve this functionality?
You can skip the comparison by doing,
def sqrt_activation(x):
return tf.math.sign(x)*tf.math.sqrt(tf.abs(x))
YOu need to use tf backend functions and convert your code as follows:
import tensorflow as tf
#tf.function
def sqrt_activation(x):
zeros = tf.zeros_like(x)
pos = tf.where(x >= 0, tf.math.sqrt(x), zeros)
neg = tf.where(x < 0, -tf.math.sqrt(-x), zeros)
return pos + neg
note that this function check all tensor to meet on those conditions ergo returning the pos + neg line
In my code, I am trying to extract data from csv file to use in the function, but it doesnt output anything, and gives no error. My code works because I tried it with just numpy array as inputs. not sure why it doesnt work with panda.
import numpy as np
import pandas as pd
import os
# change the current directory to the directory where the running script file is
os.chdir(os.path.dirname(os.path.abspath(__file__)))
# finding best fit line for y=mx+b by iteration
def gradient_descent(x,y):
m_iter = b_iter = 1 #starting point
iteration = 10000
n = len(x)
learning_rate = 0.05
last_mse = 10000
#take baby steps to reach global minima
for i in range(iteration):
y_predicted = m_iter*x + b_iter
#mse = 1/n*sum([value**2 for value in (y-y_predicted)]) # cost function to minimize
mse = 1/n*sum((y-y_predicted)**2) # cost function to minimize
if (last_mse - mse)/mse < 0.001:
break
# recall MSE formula is 1/n*sum((yi-y_predicted)^2), where y_predicted = m*x+b
# using partial deriv of MSE formula, d/dm and d/db
dm = -(2/n)*sum(x*(y-y_predicted))
db = -(2/n)*sum((y-y_predicted))
# use current predicted value to get the next value for prediction
# by using learning rate
m_iter = m_iter - learning_rate*dm
b_iter = b_iter - learning_rate*db
print('m is {}, b is {}, cost is {}, iteration {}'.format(m_iter,b_iter,mse,i))
last_mse = mse
#x = np.array([1,2,3,4,5])
#y = np.array([5,7,8,10,13])
#gradient_descent(x,y)
df = pd.read_csv('Linear_Data.csv')
x = df['Area']
y = df['Price']
gradient_descent(x,y)
My code works because I tried it with just numpy array as inputs. not sure why it doesnt work with panda.
Well no, your code also works with pandas dataframes:
df = pd.DataFrame({'Area': [1,2,3,4,5], 'Price': [5,7,8,10,13]})
x = df['Area']
y = df['Price']
gradient_descent(x,y)
Above will give you the same output as with numpy arrays.
Try to check what's in Linear_Data.csv and/or add some print statements in the gradient_descent function just to check your assumptions. I would suggest to first of all add a print statement before the condition with the break statement:
print(last_mse, mse)
if (last_mse - mse)/mse < 0.001:
break
Suppose that I have an array
a = np.array([[1,2.5,3,4],[1, 2.5, 3,3]])
I want to find the mode of each column without using stats.mode().
The only way I can think of is the following:
result = np.zeros(a.shape[1])
for i in range(len(result)):
curr_col = a[:,i]
result[i] = curr_col[np.argmax(np.unique(curr_col, return_counts = True))]
update:
There is some error in the above code and the correct one should be:
values, counts = np.unique(a[:,i], return_counts = True)
result[i] = values[np.argmax(counts)]
I have to use the loop because np.unique does not output compatible result for each column and there is no way to use np.bincount because the dtype is not int.
If you look at the numpy.unique documentation, this function returns the values and the associated counts (because you specified return_counts=True). A slight modification of your code is necessary to give the correct result. What you are trying todo is to find the value associated to the highest count:
import numpy as np
a = np.array([[1,5,3,4],[1,5,3,3],[1,5,3,3]])
result = np.zeros(a.shape[1])
for i in range(len(result)):
values, counts = np.unique(a[:,i], return_counts = True)
result[i] = values[np.argmax(counts)]
print(result)
Output:
% python3 script.py
[1. 5. 3. 4.]
Here is a code tha compares your solution with the scipy.stats.mode function:
import numpy as np
import scipy.stats as sps
import time
a = np.random.randint(1,100,(100,100))
t_start = time.time()
result = np.zeros(a.shape[1])
for i in range(len(result)):
values, counts = np.unique(a[:,i], return_counts = True)
result[i] = values[np.argmax(counts)]
print('Timer 1: ', (time.time()-t_start), 's')
t_start = time.time()
result_2 = sps.mode(a, axis=0).mode
print('Timer 2: ', (time.time()-t_start), 's')
print('Matrices are equal!' if np.allclose(result, result_2) else 'Matrices differ!')
Output:
% python3 script.py
Timer 1: 0.002721071243286133 s
Timer 2: 0.003339052200317383 s
Matrices are equal!
I tried several values for parameters and your code is actually faster than scipy.stats.mode function so it is probably close to optimal.
I want to perform a binary-search using e.g. np.searchsorted, however, I do not want to create an explicit array containing values. Instead, I want to define a function giving the value to be expected at the desired position of the array, e.g. p(i) = i, where i denotes the position within the array.
Generating an array of values regarding the function would, in my case, be neither efficient nor elegant. Is there any way to achieve this?
What about something like:
import collections
class GeneratorSequence(collections.Sequence):
def __init__(self, func, size):
self._func = func
self._len = size
def __len__(self):
return self._len
def __getitem__(self, i):
if 0 <= i < self._len:
return self._func(i)
else:
raise IndexError
def __iter__(self):
for i in range(self._len):
yield self[i]
This would work with np.searchsorted(), e.g.:
import numpy as np
gen_seq = GeneratorSequence(lambda x: x ** 2, 100)
np.searchsorted(gen_seq, 9)
# 3
You could also write your own binary search function, you do not really need NumPy in this case, and it can actually be beneficial:
def bin_search(seq, item):
first = 0
last = len(seq) - 1
found = False
while first <= last and not found:
midpoint = (first + last) // 2
if seq[midpoint] == item:
first = midpoint
found = True
else:
if item < seq[midpoint]:
last = midpoint - 1
else:
first = midpoint + 1
return first
Which gives identical results:
all(bin_search(gen_seq, i) == np.searchsorted(gen_seq, i) for i in range(100))
# True
Incidentally, this is also WAY faster:
gen_seq = GeneratorSequence(lambda x: x ** 2, 1000000)
%timeit np.searchsorted(gen_seq, 10000)
# 1 loop, best of 3: 1.23 s per loop
%timeit bin_search(gen_seq, 10000)
# 100000 loops, best of 3: 16.1 µs per loop
Inspired by #norok2 comment, I think you can use something like this:
def f(i):
return i*2 # Just an example
class MySeq(Sequence):
def __init__(self, f, maxi):
self.maxi = maxi
self.f = f
def __getitem__(self, x):
if x < 0 or x > self.maxi:
raise IndexError()
return self.f(x)
def __len__(self):
return self.maxi + 1
In this case f is your function while maxi is the maximum index. This of course only works if the function f return values in sorted order.
At this point you can use an object of type MySeq inside np.searchsorted.
I want to transfer Matlab code to Jython version, and find that the fminsearch in Matlab might be replaced by Apache-Common-Math-Optimization.
I'm coding on the Mango Medical Image script manager, which uses Jython 2.5.3 as coding language. And the Math version is 3.6.1.
Here is my code:
def f(x,y):
return x^2+y^2
sys.path.append('/home/shujian/APPs/Mango/lib/commons-math3-3.6.1.jar')
sys.add_package('org.apache.commons.math3.analysis')
from org.apache.commons.math3.analysis import MultivariateFunction
sys.add_package('org.apache.commons.math3.optim.nonlinear.scalar.noderiv')
from org.apache.commons.math3.optim.nonlinear.scalar.noderiv import NelderMeadSimplex,SimplexOptimizer
sys.add_package('org.apache.commons.math3.optim.nonlinear.scalar')
from org.apache.commons.math3.optim.nonlinear.scalar import ObjectiveFunction
sys.add_package('org.apache.commons.math3.optim')
from org.apache.commons.math3.optim import MaxEval,InitialGuess
sys.add_package('org.apache.commons.math3.optimization')
from org.apache.commons.math3.optimization import GoalType
initialSolution=[2.0,2.0]
simplex=NelderMeadSimplex([2.0,2.0])
opt=SimplexOptimizer(2**(-6), 2**(-10))
solution=opt.optimize(MaxEval(300),ObjectiveFunction(f),simplex,GoalType.MINIMIZE,InitialGuess([2.0,2.0]))
skewParameters2 = solution.getPointRef()
print skewParameters2;
And I got the error below:
TypeError: optimize(): 1st arg can't be coerced to
I'm quite confused about how to use the optimization in Jython and the examples are all Java version.
I've given up this plan and find another method to perform the fminsearch in Jython. Below is the Jython version code:
import sys
sys.path.append('.../jnumeric-2.5.1_ra0.1.jar') #add the jnumeric path
import Numeric as np
def nelder_mead(f, x_start,
step=0.1, no_improve_thr=10e-6,
no_improv_break=10, max_iter=0,
alpha=1., gamma=2., rho=-0.5, sigma=0.5):
'''
#param f (function): function to optimize, must return a scalar score
and operate over a numpy array of the same dimensions as x_start
#param x_start (float list): initial position
#param step (float): look-around radius in initial step
#no_improv_thr, no_improv_break (float, int): break after no_improv_break iterations with
an improvement lower than no_improv_thr
#max_iter (int): always break after this number of iterations.
Set it to 0 to loop indefinitely.
#alpha, gamma, rho, sigma (floats): parameters of the algorithm
(see Wikipedia page for reference)
return: tuple (best parameter array, best score)
'''
# init
dim = len(x_start)
prev_best = f(x_start)
no_improv = 0
res = [[np.array(x_start), prev_best]]
for i in range(dim):
x=np.array(x_start)
x[i]=x[i]+step
score = f(x)
res.append([x, score])
# simplex iter
iters = 0
while 1:
# order
res.sort(key=lambda x: x[1])
best = res[0][1]
# break after max_iter
if max_iter and iters >= max_iter:
return res[0]
iters += 1
# break after no_improv_break iterations with no improvement
print '...best so far:', best
if best < prev_best - no_improve_thr:
no_improv = 0
prev_best = best
else:
no_improv += 1
if no_improv >= no_improv_break:
return res[0]
# centroid
x0 = [0.] * dim
for tup in res[:-1]:
for i, c in enumerate(tup[0]):
x0[i] += c / (len(res)-1)
# reflection
xr = x0 + alpha*(x0 - res[-1][0])
rscore = f(xr)
if res[0][1] <= rscore < res[-2][1]:
del res[-1]
res.append([xr, rscore])
continue
# expansion
if rscore < res[0][1]:
xe = x0 + gamma*(x0 - res[-1][0])
escore = f(xe)
if escore < rscore:
del res[-1]
res.append([xe, escore])
continue
else:
del res[-1]
res.append([xr, rscore])
continue
# contraction
xc = x0 + rho*(x0 - res[-1][0])
cscore = f(xc)
if cscore < res[-1][1]:
del res[-1]
res.append([xc, cscore])
continue
# reduction
x1 = res[0][0]
nres = []
for tup in res:
redx = x1 + sigma*(tup[0] - x1)
score = f(redx)
nres.append([redx, score])
res = nres
And the test example is as below:
def f(x):
return x[0]**2+x[1]**2+x[2]**2
print nelder_mead(f,[3.4,2.3,2.2])
Actually, the original version is for python, and the link below is the source:
https://github.com/fchollet/nelder-mead