Storing Search results for Future Use - sql

I have the following scenario where the search returns a list of userid values (1,2,3,4,5,6... etc.) If the search were to be run again, the results are guaranteed to change given some time. However I need to stored the instance of the search results to be used in the future.
We have a current implementation (legacy), which creates a record for the search_id with the criteria and inserts every row returned into a different table with the associated search_id.
table search_results
search_id unsigned int FK, PK (clustered index)
user_id unsigned int FK
This is an unacceptable approach as this table has grown onto millions of records. I've considered partitioning the table, but either I will have numerous partitions (1000s).
I've optimized the existing tables that search results expired unless they're used elsewhere, so all the search results are referenced elsewhere.
In the current schema, I cannot store the results as serialized arrays or XML. I am looking to efficiently store the search result information, such that it can be efficiently accessed later without being burdened by the number of records.
EDIT: Thank you for the answers, I don't have any problems running the searches themselves, but the result set for the search gets used in this case for recipient lists, which will be used over and over again, the purpose of storing is exactly to have a snapshot of the data at the given time.

The answer is don't store query results. It's a terrible idea!
It introduces statefulness, which is very bad unless you really (really really) need it
It isn't scalable (as you're finding out)
The data is stale as soon as it's stored
The correct approach is to fix your query/database so it runs acceptable quickly.
If you can't make the queries faster using better SQL and/or indexes etc, I recommend using lucene (or any text-based search engine) and denormalizing your database into it. Lucene queries are incredibly fast.
I recently did exactly this on a large web site that was doing what you're doing: It was caching query results from the production relational database in the session object in an attempt top speed up queries, but it was a mess, and wasn't much faster anyway - before my time, a "senior" java developer (whose name started with Jam.. and ended with .illiams) who was actually a moron decided it was a good idea.
I put in Solr (a java-tailored lucene implementation) and kept Solr up to date with the relational database (using work queues) and the web queries are now just a few milliseconds.

Is there a reason why you need to store every search? Surely you would want the most up to date information available for the user ?
I'll admit first, this isn't a great solution.
Setup another database alongside your current one [SYS_Searches]
The save script could use SELECT INTO [SYS_Searches].Results_{Search_ID}
The script that retrieves can do a simple SELECT out of the matching table.
Benefits:
Every search is neatly packed into it's own table, [preferably in another DB]
The retrieval query is very simple
The retrieval time should be very quick, no massive table scans.
Drawbacks:
You will have a table for every x user * y searches a user can store.
This could get very silly very quickly unless there is management involved to expire results or the user can only have 1 cached search result set.
Not pretty, but I can't think of another way.

Related

SQL whats faster for select: bitwise "and" or joins with bigint

I have MS SQL 2012 DB with table for documents.
In application there are users.
users can be document managers.
one user can be manager for many documents
one document can have many managers.
There is limit 50 user for app.
I was wondering what will be te best way(or fastest) to search document that manager is some user(or few users).
1) One table for document and additional for document manager objects. then search like
select from document dk
join documentmanager dm on dm.dokid=dk.id and dm.userlogin='xxx'
or
2) do not use additional table for manager object, instead bind each user managernumber from 1 to 50 then when serach use :
SELECT * FROM documents where (managers & CAST(manager AS BIGINT) <> 0)
where manager is 2^managernumber .
Second one seem to be faster and simplier and not required that additional table so also requires less space. But i dont know if i use indexes on that additional table that maybe it will be faster then 2) . Of course there is limitation to 63 users but let say its not important.
It's hard to tell which one would be faster, at least when the number of records is small. The second approach has a simpler query, but it can't make use of any indexes as it has to calculate the value of the expression for each document.
The second approach may seem easier, but it's actually quite unconventional. Looking at the table design of the first approach anyone with a bit of database experience can immediately tell how it's supposed to work. Anyone looking at the second approach needs to examine the query to figure out what the "magic" numbers in the table is supposed to mean.
Even if the number of users is limited so that the second approach would be usable, the number of documents is likely to grow over time. As the query in the second approach has to examine every document it will get slower when the number of documents grow. The query in the first approach on the other hand can make use of indexes, so the execution time is mostly depending on the number of records returned, not so much on the number of records in the tables. It can easily handle tables with upwards of millions of records before you would even notice any difference in performance.
The first idea is how a relational database is typically designed. There is a reason -- it is the better design for a database.
You say the limit on the number of users does not matter you don't need more than 63. In my opinion if you have less than 63 of anything you don't need a database. You can load it in from any file and store all the information in memory. If size and scalability don't matter then don't even use a database.
In every other case use the standard relational design that has been proven robust over many years.

Dynamically creating tables as a means of partitioning: OK or bad practice?

Is it reasonable for an application to create database tables dynamically as a means of partitioning?
For example, say I have a large table "widgets" with a "userID" column identifying the owner of each row. If this table tended to grow extremely large, would it make sense to instead have the application create a new table called "widgets_{username}" for each new user? Assume that the application will only ever have to query for widgets belonging to a single user at a time (i.e. no need to try and join any of these user widget tables together).
Doing this would break up the one large table into more easily-managed chunks, but this doesn't seem like an elegant solution. In my mind, the database schema should be defined when the application is written, and any runtime data is stored as rows, not as additional tables.
As a more general question, is modifying the database schema at runtime ever ok?
Edit: This question is mostly hypothetical; I had a pretty good feeling that creating tables at runtime didn't make sense. That being said, we do have a table with millions of rows in our application. SELECTs perform fine, but things like deleting all rows owned by a particular user can take a while. Basically I'm looking for some solid reasoning why just dynamically creating a table for each user doesn't make sense for when I'm asked.
NO, NO, NO!! Now repeat after me, I will not do this because it will create many headaches and problems in the future! Databases are made to handle large amounts of information. they use indexes to quickly find what you are after. think phone book how effective is the index? would it be better to have a different book for each last name?
This will not give you anything performance wise. Keep a single table, but be sure to index on UserID and you'll be able to get the data fast. however if you split the table up, it becomes impossible/really really hard to get any info that spans multiple users, like search all users for a certain widget, count of all widgets of a certain type, etc. you need to have every query be built dynamically.
If deleting rows is slow, look into that. How many rows at one time are we talking about 10, 1000, 100000? What is your clustered index on this table? Could you use a "soft delete", where you have a status column that you UPDATE to "D" to mark the row as deleted. Can you delete the rows at a later time, with less database activity. is the delete slow because it is being blocked by other activity. look into those before you break up the table.
No, that would be a bad idea. However some DBMSs (e.g. Oracle) allow a single table to be partitioned on values of a column, which would achieve the objective without creating new tables at run time. Having said that, it is not "the norm" to partition tables like this: it is only usually done in very large databases.
Using an index on userID should result nearly in the same performance.
In my opinion, changing the database schema at runtime is bad practice.
Consider, for example, security issues...
Is it reasonable for an application to create database tables
dynamically as a means of partitioning?
No. (smile)

What is wrong with using SELECT * FROM sometable [duplicate]

I've heard that SELECT * is generally bad practice to use when writing SQL commands because it is more efficient to SELECT columns you specifically need.
If I need to SELECT every column in a table, should I use
SELECT * FROM TABLE
or
SELECT column1, colum2, column3, etc. FROM TABLE
Does the efficiency really matter in this case? I'd think SELECT * would be more optimal internally if you really need all of the data, but I'm saying this with no real understanding of database.
I'm curious to know what the best practice is in this case.
UPDATE: I probably should specify that the only situation where I would really want to do a SELECT * is when I'm selecting data from one table where I know all columns will always need to be retrieved, even when new columns are added.
Given the responses I've seen however, this still seems like a bad idea and SELECT * should never be used for a lot more technical reasons that I ever though about.
One reason that selecting specific columns is better is that it raises the probability that SQL Server can access the data from indexes rather than querying the table data.
Here's a post I wrote about it: The real reason select queries are bad index coverage
It's also less fragile to change, since any code that consumes the data will be getting the same data structure regardless of changes you make to the table schema in the future.
Given your specification that you are selecting all columns, there is little difference at this time. Realize, however, that database schemas do change. If you use SELECT * you are going to get any new columns added to the table, even though in all likelihood, your code is not prepared to use or present that new data. This means that you are exposing your system to unexpected performance and functionality changes.
You may be willing to dismiss this as a minor cost, but realize that columns that you don't need still must be:
Read from database
Sent across the network
Marshalled into your process
(for ADO-type technologies) Saved in a data-table in-memory
Ignored and discarded / garbage-collected
Item #1 has many hidden costs including eliminating some potential covering index, causing data-page loads (and server cache thrashing), incurring row / page / table locks that might be otherwise avoided.
Balance this against the potential savings of specifying the columns versus an * and the only potential savings are:
Programmer doesn't need to revisit the SQL to add columns
The network-transport of the SQL is smaller / faster
SQL Server query parse / validation time
SQL Server query plan cache
For item 1, the reality is that you're going to add / change code to use any new column you might add anyway, so it is a wash.
For item 2, the difference is rarely enough to push you into a different packet-size or number of network packets. If you get to the point where SQL statement transmission time is the predominant issue, you probably need to reduce the rate of statements first.
For item 3, there is NO savings as the expansion of the * has to happen anyway, which means consulting the table(s) schema anyway. Realistically, listing the columns will incur the same cost because they have to be validated against the schema. In other words this is a complete wash.
For item 4, when you specify specific columns, your query plan cache could get larger but only if you are dealing with different sets of columns (which is not what you've specified). In this case, you do want different cache entries because you want different plans as needed.
So, this all comes down, because of the way you specified the question, to the issue resiliency in the face of eventual schema modifications. If you're burning this schema into ROM (it happens), then an * is perfectly acceptable.
However, my general guideline is that you should only select the columns you need, which means that sometimes it will look like you are asking for all of them, but DBAs and schema evolution mean that some new columns might appear that could greatly affect the query.
My advice is that you should ALWAYS SELECT specific columns. Remember that you get good at what you do over and over, so just get in the habit of doing it right.
If you are wondering why a schema might change without code changing, think in terms of audit logging, effective/expiration dates and other similar things that get added by DBAs for systemically for compliance issues. Another source of underhanded changes is denormalizations for performance elsewhere in the system or user-defined fields.
You should only select the columns that you need. Even if you need all columns it's still better to list column names so that the sql server does not have to query system table for columns.
Also, your application might break if someone adds columns to the table. Your program will get columns it didn't expect too and it might not know how to process them.
Apart from this if the table has a binary column then the query will be much more slower and use more network resources.
There are four big reasons that select * is a bad thing:
The most significant practical reason is that it forces the user to magically know the order in which columns will be returned. It's better to be explicit, which also protects you against the table changing, which segues nicely into...
If a column name you're using changes, it's better to catch it early (at the point of the SQL call) rather than when you're trying to use the column that no longer exists (or has had its name changed, etc.)
Listing the column names makes your code far more self-documented, and so probably more readable.
If you're transferring over a network (or even if you aren't), columns you don't need are just waste.
Specifying the column list is usually the best option because your application won't be affected if someone adds/inserts a column to the table.
Specifying column names is definitely faster - for the server. But if
performance is not a big issue (for example, this is a website content database with hundreds, maybe thousands - but not millions - of rows in each table); AND
your job is to create many small, similar applications (e.g. public-facing content-managed websites) using a common framework, rather than creating a complex one-off application; AND
flexibility is important (lots of customization of the db schema for each site);
then you're better off sticking with SELECT *. In our framework, heavy use of SELECT * allows us to introduce a new website managed content field to a table, giving it all of the benefits of the CMS (versioning, workflow/approvals, etc.), while only touching the code at a couple of points, instead of a couple dozen points.
I know the DB gurus are going to hate me for this - go ahead, vote me down - but in my world, developer time is scarce and CPU cycles are abundant, so I adjust accordingly what I conserve and what I waste.
SELECT * is a bad practice even if the query is not sent over a network.
Selecting more data than you need makes the query less efficient - the server has to read and transfer extra data, so it takes time and creates unnecessary load on the system (not only the network, as others mentioned, but also disk, CPU etc.). Additionally, the server is unable to optimize the query as well as it might (for example, use covering index for the query).
After some time your table structure might change, so SELECT * will return a different set of columns. So, your application might get a dataset of unexpected structure and break somewhere downstream. Explicitly stating the columns guarantees that you either get a dataset of known structure, or get a clear error on the database level (like 'column not found').
Of course, all this doesn't matter much for a small and simple system.
Lots of good reasons answered here so far, here's another one that hasn't been mentioned.
Explicitly naming the columns will help you with maintenance down the road. At some point you're going to be making changes or troubleshooting, and find yourself asking "where the heck is that column used".
If you've got the names listed explicitly, then finding every reference to that column -- through all your stored procedures, views, etc -- is simple. Just dump a CREATE script for your DB schema, and text search through it.
Performance wise, SELECT with specific columns can be faster (no need to read in all the data). If your query really does use ALL the columns, SELECT with explicit parameters is still preferred. Any speed difference will be basically unnoticeable and near constant-time. One day your schema will change, and this is good insurance to prevent problems due to this.
definitely defining the columns, because SQL Server will not have to do a lookup on the columns to pull them. If you define the columns, then SQL can skip that step.
It's always better to specify the columns you need, if you think about it one time, SQL doesn't have to think "wtf is *" every time you query. On top of that, someone later may add columns to the table that you actually do not need in your query and you'll be better off in that case by specifying all of your columns.
The problem with "select *" is the possibility of bringing data you don't really need. During the actual database query, the selected columns don't really add to the computation. What's really "heavy" is the data transport back to your client, and any column that you don't really need is just wasting network bandwidth and adding to the time you're waiting for you query to return.
Even if you do use all the columns brought from a "select *...", that's just for now. If in the future you change the table/view layout and add more columns, you'll start bring those in your selects even if you don't need them.
Another point in which a "select *" statement is bad is on view creation. If you create a view using "select *" and later add columns to your table, the view definition and the data returned won't match, and you'll need to recompile your views in order for them to work again.
I know that writing a "select *" is tempting, 'cause I really don't like to manually specify all the fields on my queries, but when your system start to evolve, you'll see that it's worth to spend this extra time/effort in specifying the fields rather than spending much more time and effort removing bugs on your views or optimizing your app.
While explicitly listing columns is good for performance, don't get crazy.
So if you use all the data, try SELECT * for simplicity (imagine having many columns and doing a JOIN... query may get awful). Then - measure. Compare with query with column names listed explicitly.
Don't speculate about performance, measure it!
Explicit listing helps most when you have some column containing big data (like body of a post or article), and don't need it in given query. Then by not returning it in your answer DB server can save time, bandwidth, and disk throughput. Your query result will also be smaller, which is good for any query cache.
You should really be selecting only the fields you need, and only the required number, i.e.
SELECT Field1, Field2 FROM SomeTable WHERE --(constraints)
Outside of the database, dynamic queries run the risk of injection attacks and malformed data. Typically you get round this using stored procedures or parameterised queries. Also (although not really that much of a problem) the server has to generate an execution plan each time a dynamic query is executed.
It is NOT faster to use explicit field names versus *, if and only if, you need to get the data for all fields.
Your client software shouldn't depend on the order of the fields returned, so that's a nonsense too.
And it's possible (though unlikely) that you need to get all fields using * because you don't yet know what fields exist (think very dynamic database structure).
Another disadvantage of using explicit field names is that if there are many of them and they're long then it makes reading the code and/or the query log more difficult.
So the rule should be: if you need all the fields, use *, if you need only a subset, name them explicitly.
The result is too huge. It is slow to generate and send the result from the SQL engine to the client.
The client side, being a generic programming environment, is not and should not be designed to filter and process the results (e.g. the WHERE clause, ORDER clause), as the number of rows can be huge (e.g. tens of millions of rows).
Naming each column you expect to get in your application also ensures your application won't break if someone alters the table, as long as your columns are still present (in any order).
Performance wise I have seen comments that both are equal. but usability aspect there are some +'s and -'s
When you use a (select *) in a query and if some one alter the table and add new fields which do not need for the previous query it is an unnecessary overhead. And what if the newly added field is a blob or an image field??? your query response time is going to be really slow then.
In other hand if you use a (select col1,col2,..) and if the table get altered and added new fields and if those fields are needed in the result set, you always need to edit your select query after table alteration.
But I suggest always to use select col1,col2,... in your queries and alter the query if the table get altered later...
This is an old post, but still valid. For reference, I have a very complicated query consisting of:
12 tables
6 Left joins
9 inner joins
108 total columns on all 12 tables
I only need 54 columns
A 4 column Order By clause
When I execute the query using Select *, it takes an average of 2869ms.
When I execute the query using Select , it takes an average of 1513ms.
Total rows returned is 13,949.
There is no doubt selecting column names means faster performance over Select *
Select is equally efficient (in terms of velocity) if you use * or columns.
The difference is about memory, not velocity. When you select several columns SQL Server must allocate memory space to serve you the query, including all data for all the columns that you've requested, even if you're only using one of them.
What does matter in terms of performance is the excecution plan which in turn depends heavily on your WHERE clause and the number of JOIN, OUTER JOIN, etc ...
For your question just use SELECT *. If you need all the columns there's no performance difference.
It depends on the version of your DB server, but modern versions of SQL can cache the plan either way. I'd say go with whatever is most maintainable with your data access code.
One reason it's better practice to spell out exactly which columns you want is because of possible future changes in the table structure.
If you are reading in data manually using an index based approach to populate a data structure with the results of your query, then in the future when you add/remove a column you will have headaches trying to figure out what went wrong.
As to what is faster, I'll defer to others for their expertise.
As with most problems, it depends on what you want to achieve. If you want to create a db grid that will allow all columns in any table, then "Select *" is the answer. However, if you will only need certain columns and adding or deleting columns from the query is done infrequently, then specify them individually.
It also depends on the amount of data you want to transfer from the server. If one of the columns is a defined as memo, graphic, blob, etc. and you don't need that column, you'd better not use "Select *" or you'll get a whole bunch of data you don't want and your performance could suffer.
To add on to what everyone else has said, if all of your columns that you are selecting are included in an index, your result set will be pulled from the index instead of looking up additional data from SQL.
SELECT * is necessary if one wants to obtain metadata such as the number of columns.
Gonna get slammed for this, but I do a select * because almost all my data is retrived from SQL Server Views that precombine needed values from multiple tables into a single easy to access View.
I do then want all the columns from the view which won't change when new fields are added to underlying tables. This has the added benefit of allowing me to change where data comes from. FieldA in the View may at one time be calculated and then I may change it to be static. Either way the View supplies FieldA to me.
The beauty of this is that it allows my data layer to get datasets. It then passes them to my BL which can then create objects from them. My main app only knows and interacts with the objects. I even allow my objects to self-create when passed a datarow.
Of course, I'm the only developer, so that helps too :)
What everyone above said, plus:
If you're striving for readable maintainable code, doing something like:
SELECT foo, bar FROM widgets;
is instantly readable and shows intent. If you make that call you know what you're getting back. If widgets only has foo and bar columns, then selecting * means you still have to think about what you're getting back, confirm the order is mapped correctly, etc. However, if widgets has more columns but you're only interested in foo and bar, then your code gets messy when you query for a wildcard and then only use some of what's returned.
And remember if you have an inner join by definition you do not need all the columns as the data in the join columns is repeated.
It's not like listing columns in SQl server is hard or even time-consuming. You just drag them over from the object browser (you can get all in one go by dragging from the word columns). To put a permanent performance hit on your system (becasue this can reduce the use of indexes and becasue sending unneeded data over the network is costly) and make it more likely that you will have unexpected problems as the database changes (sometimes columns get added that you do not want the user to see for instance) just to save less than a minute of development time is short-sighted and unprofessional.
Absolutely define the columns you want to SELECT every time. There is no reason not to and the performance improvement is well worth it.
They should never have given the option to "SELECT *"
If you need every column then just use SELECT * but remember that the order could potentially change so when you are consuming the results access them by name and not by index.
I would ignore comments about how * needs to go get the list - chances are parsing and validating named columns is equal to the processing time if not more. Don't prematurely optimize ;-)

MySQL Table with TEXT column

I've been working on a database and I have to deal with a TEXT field.
Now, I believe I've seen some place mentioning it would be best to isolate the TEXT column from the rest of the table(putting it in a table of its own).
However, now I can't find this reference anywhere and since it was quite a while ago, I'm starting to think that maybe I misinterpreted this information.
Some research revealed this, suggesting that
Separate text/blobs from metadata, don't put text/blobs in results if you don't need them.
However, I am not familiar with the definition of "metadata" being used here.
So I wonder if there are any relevant advantages in putting a TEXT column in a table of its own. What are the potential problems of having it with the rest of the fields? And potential problems of keeping it in a separated table?
This table(without the TEXT field) is supposed to be searched(SELECTed) rather frequently. Is "premature optimization considered evil" important here? (If there really is a penalty in TEXT columns, how relevant is it, considering it is fairly easy to change this later if needed).
Besides, are there any good links on this topic? (Perhaps stackoverflow questions&answers? I've tried to search this topic but I only found TEXT vs VARCHAR discussions)
Yep, it seems you've misinterpreted the meaning of the sentence. What it says is that you should only do a SELECT including a TEXT field if you really need the contents of that field. This is because TEXT/BLOB columns can contain huge amounts of data which would need to be delivered to your application - this takes time and of course resources.
Best wishes,
Fabian
This is probably premature optimisation. Performance tuning MySQL is really tricky and can only be done with real performance data for your application. I've seen plenty of attempts to second guess what makes MySQL slow without real data and the result each time has been a messy schema and complex code which will actually make performance tuning harder later on.
Start with a normalised simple schema, then when something proves too slow add a complexity only where/if needed.
As others have pointed out the quote you mentioned is more applicable to query results than the schema definition, in any case your choice of storage engine would affect the validity of the advice anyway.
If you do find yourself needing to add the complexity of moving TEXT/BLOB columns to a separate table, then it's probably worth considering the option of moving them out of the database altogether. Often file storage has advantages over database storage especially if you don't do any relational queries on the contents of the TEXT/BLOB column.
Basically, get some data before taking any MySQL tuning advice you get on the Internet, including this!
The data for a TEXT column is already stored separately. Whenever you SELECT * from a table with text column(s), each row in the result-set requires a lookup into the text storage area. This coupled with the very real possibility of huge amounts of data would be a big overhead to your system.
Moving the column to another table simply requires an additional lookup, one into the secondary table, and the normal one into the text storage area.
The only time that moving TEXT columns into another table will offer any benefit is if there it a tendency to usually select all columns from tables. This is merely introducing a second bad practice to compensate for the first. It should go without saying the two wrongs is not the same as three lefts.
The concern is that a large text field—like way over 8,192 bytes—will cause excessive paging and/or file i/o during complex queries on unindexed fields. In such cases, it's better to migrate the large field to another table and replace it with the new table's row id or index (which would then be metadata since it doesn't actually contain data).
The disadvantages are:
a) More complicated schema
b) If the large field is using inspected or retrieved, there is no advantage
c) Ensuring data consistency is more complicated and a potential source of database malaise.
There might be some good reasons to separate a text field out of your table definition. For instance, if you are using an ORM that loads the complete record no matter what, you might want to create a properties table to hold the text field so it doesn't load all the time. However if you are controlling the code 100%, for simplicity, leave the field on the table, then only select it when you need it to cut down on data trasfer and reading time.
Now, I believe I've seen some place mentioning it would be best to isolate the TEXT column from the rest of the table(putting it in a table of its own).
However, now I can't find this reference anywhere and since it was quite a while ago, I'm starting to think that maybe I misinterpreted this information.
You probably saw this, from the MySQL manual
http://dev.mysql.com/doc/refman/5.5/en/optimize-character.html
If a table contains string columns such as name and address, but many queries do not retrieve those columns, consider splitting the string columns into a separate table and using join queries with a foreign key when necessary. When MySQL retrieves any value from a row, it reads a data block containing all the columns of that row (and possibly other adjacent rows). Keeping each row small, with only the most frequently used columns, allows more rows to fit in each data block. Such compact tables reduce disk I/O and memory usage for common queries.
Which indeed is telling you that in MySQL you are discouraged from keeping TEXT data (and BLOB, as written elsewhere) in tables frequently searched

How does row design influence MySQL performance?

I got an users table and some forum, where users can write. Every action on forum uses users table. User can have a profile, which can be quite big (50KB). If I got such big data in each row wouldn't it be faster to have separate table with user's profiles and other data that aren't accessed very often?
In an online RPG game each character have a long list of abilities, for example: pistols experience, machine guns experience, throwing grenades experience, and 15 more. Is it better to store them in a string as numbers separated with semicolon - which would take more space than integers, or should I make for each ability individual field? Or maybe binary? (I use c++)
If you don't need the data from
specific columns, don't get it.
Don't do SELECT * but SELECT a,
b,...
If you need to do SQL-queries over
certain columns e.g. ORDER BY
pistols_experience, you should
leave it in different columns. If
you just display it all at once, you
could serialize the different
key-value-pairs into a text field
via YAML, JSON etc.
(1) Not in itself, no. As stefan says, you should be selecting only what you want, so having stuff you don't want in the table is no issue. A 50K TEXT blob is only a pointer in the row.
However, there can be an issue if you are using MyISAM tables. In MyISAM there is only table-level locking, so when you have one user update their row (eg. last visit time), it blocks all other users from accessing the table. In this case you might experience some improvement by breaking out heavily-updated columns into a separate table from the relatively static but heavily-selected ones.
But you don't want to be using MyISAM anyway: it's a bit crap. Use InnoDB, get row-level locking (and transactions, and foreign key constraints), and don't worry about it. The only reason to use MyISAM tables today is for fulltext search, which InnoDB doesn't support.
(2) You would normally separate every independent value into its own field. If you hit a real performance issue and you don't need to do database-level manipulation of the values on their own, you could consider denormalising it, but you'd be losing the power of the database.