I have heard that DFA can be simulated by Loop and NFA can be simulated by recursive method. I don't understand how that works. Can anyone give me an example?
In a sense, sure. DFAs can easily be simulated by writing a do...while loop with a switch statement in it based on the current state, whereas you can think of a simulator for NFAs as doing a search on a tree (depth first search is recursive, although you could just as well imagine a breadth-first search). There's not really any formality in this, just a casual observation about how you might implement simulators.
Related
How could I show that there exist infinitely many DFA's each of which recognises the language {ϵ,a,b}.
That depends on how you are counting DFAs. Clearly there is one DFA for the language, and you can always add an unreachable state to the automaton. Ordinarily, though, such trivial differences are discounted, and with a finite language, there are only a finite number of different DFAs. With an infinite language there would be cycles in the transition graph which can be expanded again and again, which makes for a more significant difference. Another way to put it, you cannot show that there exist an infinite number of different DFAs for the given finite language.
I have to design a branch-and bound algorithm that solves the optimal tour of a graph on the cartesian plane every time. I have been given the hint that identifying hopeless branches earlier in the runtime will compound into a program that runs "a hundred times faster". I had the idea of assuming that the shortest edge connected to the starting/ending node will be either the first or last edge in the tour but a thin diamond shaped graph proves otherwise. Does any one have ideas for how to eliminate these hopeless branches or a reference that talks about this?
Basically, is there a better way to branch to subsets of solutions better than just lexicographically, eg. first branch is including and excluding edge a-b, second branch includes and excludes branch a-c
So somewhere in your branch-and-bound algorithm, you look at possible places to go, and then somehow keep track of them to do later.
To make this more efficient, you can do a couple things:
Write a better bound calculator. In other words, come up with an algorithm that determines the bound more accurately. This will result in less time spent on paths that turn out to be poor.
Instead of using a stack to keep track of things to do, use a queue. Instead of using a queue, use a priority queue (heap) ordered by bound, e.g. the things that seem best are put at the top of the heap, and the things that seem bad are put on the bottom.
Nearest-neighbor is a simple algorithm. Branch-and-Bound is just an optimizing loop and additionally you need a sub-problem solver. I think nearest-neighbor is also a branch-and-bound algorithm. Instead I would look into the simplex algorithm. It's a linear programming algorithm. Also cutting-plane algorithm to solve tsp.
What are the relative pro's and con's of both DFA's and NFA's when compared to each other?
I know that DFA's are easier to implement than NFA's and that NFA's are slower to arrive at the accept state than DFA's but are there any other explicit, well known advantages/disadvantages?
NFAs and DFAs accept the same set of languages - the regular languages.
A direct implementation of an NFA (which is not a DFA, since DFA is a subset of NFA) usually involves allowing backtracking whereas a direct implementation of a DFA requires only as many steps as the input length, so in that sense, DFAs "arrive at the answer" faster than equivalent NFAs (which are not DFAs).
When trying to find a FA corresponding to a given language or RE (e.g., by an algorithm), it is usually easier to arrive first at the NFA (since the rules are less strict). This is especially true when attempting to demonstrate the existence of a FA, since the existence of an NFA is as good as the existence of a DFA. If a DFA is needed, algorithms exist for (a) converting the NFA to an equivalent DFA and (b) minimizing the DFA.
Making gross generalizations, DFAs are faster but more complex (in terms of number of states and transitions) whereas NFAs are slower but more simple (in the same terms).
The advantage of NFA's over DFA's is the property, to always "choose the right path". Since you cannot say in an algorithm to "choose the right path", usually a conversion from NFA to DFA works, creating DFA states that symbolize multiple NFA states. Thus, when your NFA is in State A and has the choice to go to A,B or C then the next state in your DFA would be {A,B,C}.
This explains the advantages and the disadvantages:
DFA's can be implemented easier since their next state is determined by a function.
NFA's allow a user to easier express what they want, because the NFA can choose between many path's.
One definite advantage of NFA's over DFA's is that, you can build a FA representing the language that is a union, intersection, concetanation etc. of two (or more) languages easily by using NFA's. That is to say, if you have slightly simple FA's doing parts of the job, you can combine them easily using NFA's. While using a DFA, you need to build a new automata doing all the job by itself.
see, it is easier to implement.
but there's the time issue as you mentioned.
I am working on a system of optimisation problems. These tasks can be solved by a generic optimization accross all the state space. But some of my equations are independent of the remaining system( imagine a Jacobian Matrix with some blocks full of zero ) and i would like to use this fact to optimize first the joint equations and then taking the previous solution as an input finish to solve the independent components.
The rules that say the relation between the tasks can be represented as an oriented graph, but this graph contains cycle because of the joint equations, which mean that i can't use a topological sort on it.
Does anyone have an idea of how to solve this kind of pb?
Thx
There are a couple of types of frameworks you can look into (instead of inventing it yourself), which might solve your problem. The question is a bit to abstract to tell which one suits your needs, so take a look at these:
Use a solver framework to solve this optimization and look through the search space of. Take a look at Drools Planner, Gurobi, JGap, OpenTS, ...
Use a rules engine to apply the optimization changes. Take a look at Drools Expert, JESS, ...
An article has been making the rounds lately discussing the use of genetic algorithms to optimize "build orders" in StarCraft II.
http://lbrandy.com/blog/2010/11/using-genetic-algorithms-to-find-starcraft-2-build-orders/
The initial state of a StarCraft match is pre-determined and constant. And like chess, decisions made in this early stage of the match have long-standing consequences to a player's ability to perform in the mid and late game. So the various opening possibilities or "build orders" are under heavy study and scrutiny. Until the circulation of the above article, computer-assisted build order creation probably wasn't as popularity as it has been recently.
My question is... Is a genetic algorithm really the best way to model optimizing build orders?
A build order is a sequence of actions. Some actions have prerequisites like, "You need building B before you can create building C, but you can have building A at any time." So a chromosome may look like AABAC.
I'm wondering if a genetic algorithm really is the best way to tackle this problem. Although I'm not too familiar with the field, I'm having a difficult time shoe-horning the concept of genes into a data structure that is a sequence of actions. These aren't independent choices that can be mixed and matched like a head and a foot. So what value is there to things like reproduction and crossing?
I'm thinking whatever chess AIs use would be more appropriate since the array of choices at any given time could be viewed as tree-like in a way.
Although I'm not too familiar with the field, I'm having a difficult time shoe-horning the concept of genes into a data structure that is a sequence of actions. These aren't independent choices that can be mixed and matched like a head and a foot. So what value is there to things like reproduction and crossing?
Hmm, that's a very good question. Perhaps the first few moves in Starcraft can indeed be performed in pretty much any order, since contact with the enemy is not as immediate as it can be in Chess, and therefore it is not as important to remember the order of the first few moves as it is to know which of the many moves are included in those first few. But the link seems to imply otherwise, which means the 'genes' are indeed not all that amenable to being swapped around, unless there's something cunning in the encoding that I'm missing.
On the whole, and looking at the link you supplied, I'd say that genetic algorithms are a poor choice for this situation, which could be accurately mathematically modelled in some parts and the search tree expanded out in others. They may well be better than an exhaustive search of the possibility space, but may not be - especially given that there are multiple populations and poorer ones are just wasting processing time.
However, what I mean by "a poor choice" is that it is inefficient relative to a more appropriate approach; that's not to say that it couldn't still produce 98% optimal results in under a second or whatever. In situations such as this where the brute force of the computer is useful, it is usually more important that you have modelled the search space correctly than to have used the most effective algorithm.
As TaslemGuy pointed out, Genetic Algorithms aren't guaranteed to be optimal, even though they usually give good results.
To get optimal results you would have to search through every possible combination of actions until you find the optimal path through the tree-like representation. However, doing this for StarCraft is difficult, since there are so many different paths to reach a goal. In chess you move a pawn from e2 to e4 and then the opponent moves. In StarCraft you can move a unit at instant x or x+1 or x+10 or ...
A chess engine can look at many different aspects of the board (e.g. how many pieces does it have and how many does the opponent have), to guide it's search. It can ignore most of the actions available if it knows that they are strictly worse than others.
For a build-order creator only time really matters. Is it better to build another drone to get minerals faster, or is it faster to start that spawning pool right away? Not as straightforward as with chess.
These kinds of decisions happen pretty early on, so you will have to search each alternative to conclusion before you can decide on the better one, which will take a long time.
If I were to write a build-order optimizer myself, I would probably try to formulate a heuristic that estimates how good (close the to the goal state) the current state is, just as chess engines do:
Score = a*(Buildings_and_units_done/Buildings_and_units_required) - b*Time_elapsed - c*Minerals - d*Gas + e*Drone_count - f*Supply_left
This tries to keep the score tied to the completion percentage as well as StarCraft common knowledge (keep your ressources low, build drones, don't build more supply than you need). The variables a to f would need tweaking, of course.
After you've got a heuristic that can somewhat estimate the worth of a situation, I would use Best-first search or maybe IDDFS to search through the tree of possibilities.
Edit:
I recently found a paper that actually describes build order optimization in StarCraft, in real time even. The authors use depth-first search with branch and bound and heuristics that estimate the minimum amount of effort required to reach the goal based on the tech tree (e.g. zerglings need a spawning pool) and the time needed to gather the required minerals.
Genetic Algorithm can be, or can sometimes not be, the optimal or non-optimal solution. Based on the complexity of the Genetic Algorithm, how much mutation there is, the forms of combinations, and how the chromosomes of the genetic algorithm is interpreted.
So, depending on how your AI is implemented, Genetic Algorithms can be the best.
You are looking at a SINGLE way to implement genetic algorithms, while forgetting about genetic programming, the use of math, higher-order functions, etc. Genetic algorithms can be EXTREMELY sophisticated, and by using clever combining systems for crossbreeding, extremely intelligent.
For instance, neural networks are optimized by genetic algorithms quite often.
Look up "Genetic Programming." It's similar, but uses tree-structures instead of lines of characters, which allows for more complex interactions that breed better. For more complex stuff, they typically work out better.
There's been some research done using hierarchical reinforcement learning to build a layered ordering of actions that efficiently maximizes a reward. I haven't found much code implementing the idea, but there are a few papers describing MAXQ-based algorithms that have been used to explicitly tackle real-time strategy game domains, such as this and this.
This Genetic algorithm only optimizes the strategy for one very specific part of the game: The order of the first few build actions of the game. And it has a very specific goal as well: To have as many roaches as quickly as possible.
The only aspects influencing this system seem to be (I'm no starcraft player):
build time of the various units and
buildings
allowed units and buildings given the available units and buildings
Larva regeneration rate.
This is a relatively limited, relatively well defined problem with a large search space. As such it is very well suited for genetic algorithms (and quite a few other optimization algorithm at that). A full gene is a specific set of build orders that ends in the 7th roach. From what I understand you can just "play" this specific gene to see how fast it finishes, so you have a very clear fitness test.
You also have a few nice constraints on the build order, so you can combine different genes slightly smarter than just randomly.
A genetic algorithm used in this way is a very good tool to find a more optimal build order for the first stage of a game of starcraft. Due to its random nature it is also good at finding a surprising strategy, which might have been an additional goal of the author.
To use a genetic algorithm as the algorithm in an RTS game you'd have to find a way to encode reactions to situations rather than just plain old build orders. This also involves correctly identifying situations which can be a difficult task in itself. Then you'd have to let these genes play thousands of games of starcraft, against each other and (possibly) against humans, selecting and combining winners (or longer-lasting losers). This is also a good application of genetic algorithms, but it involves solving quite a few very hard problems before you even get to the genetic algorithm part.