Preparing data to plot contours in Matplotlib's Basemap - numpy

I'm having a hard time with plotting a basemap with Matplotlib and I'm fairly new to it so I was hoping for some help.
I have data of the format:
[ (lat1, lon1, data1),
(lat2, lon2, data2),
(lat3, lon3, data3),
...
(latN, lonN, dataN) ]
And here is some sample data:
(32.0, -128.5, 3.99)
(31.0, -128.0, 3.5027272727272734)
(31.5, -128.0, 3.7383333333333333)
(32.0, -128.0, 3.624)
(32.5, -128.0, 3.913157894736842)
(33.0, -128.0, 4.443333333333334)
Finally, here are some basic statistics about my data that I'm planning to plot:
LAT MIN: 22
LAT MAX: 50
LAT LEN: 1919
LON MIN: -128
LON MAX: -97
LON LEN: 1919
DATA MIN: 0
DATA MAX: 12
DATA LEN: 1919
I need to contour plot on a basemap of the continental United States. I can't, for the life of me, seem to figure out how to setup the data for plotting.
I read that the X-Axis (LATS) needs to be a np.array, and Y-Axis (LONS) needs to be an np.array and that Z (DATA) needs to be a MxN matrix where M = len(LATS) and N = len(LONS). So to me, I see Z as a diagonal matrix where the diagonal contains the data on the diagonal is the values found in DATA corresponding to the index of LATS and LONS.
Here is my code:
def show_map(self, a):
a = sorted(a, key = lambda entry: entry[0]) # sort by latitude
a = sorted(a, key = lambda entry: entry[1]) # then sort by longitude
lats = [ x[0] for x in a ]
lons = [ x[1] for x in a ]
data = [ x[2] for x in a ]
lat_min = min(lats)
lat_max = max(lats)
lon_min = min(lons)
lon_max = max(lons)
data_min = min(data)
data_max = max(data)
x = np.array(lats)
y = np.array(lons)
z = np.diag(data)
m = Basemap(
projection = 'merc',
llcrnrlat=lat_min, urcrnrlat=lat_max,
llcrnrlon=lon_min, urcrnrlon=lon_max,
rsphere=6371200., resolution='l', area_thresh=10000
lat_ts = 20, resolution = 'c'
)
fig = plt.figure()
plt.subplot(211)
ax = plt.gca()
# draw parallels
delat = 10.0
parallels = np.arange(0., 90, delat)
m.drawparallels(parallels, labels=[1,0,0,0], fontsize=10)
# draw meridians
delon = 10.
meridians = np.arange(180.,360.,delon)
m.drawmeridians(meridians,labels=[0,0,0,1],fontsize=10)
# draw map features
m.drawcoastlines(linewidth = 0.50)
m.drawcountries(linewidth = 0.50)
m.drawstates(linewidth = 0.25)
ny = z.shape[0]; nx = z.shape[1] # make grid
lo, la = m.makegrid(nx, ny)
X, Y = m(lo, la)
clevs = [0,1,2.5,5,7.5,10,15,20,30,40,50,70,100,150,200,250,300,400,500,600,750]
cs = m.contour(X, Y, z, clevs)
plt.show()
The plot I get, however, is this: http://imgur.com/li1Wg. I need something to this effect: http://matplotlib.org/basemap/_images/plotprecip.png
Can someone point out what I'm doing wrong and help me plot this? Thank You.
Thanks

I figured out how to do it. This is the code that I finally wrote, and I think this can help other users. If there is a better way of doing this, please state it, since I'm new to Matplotlib.
https://gist.github.com/3789221

Your linked gist is a solution but still wrong in another place.
In your question and in your linked gist you switched x and y coordinates with lon and lat.
x represents lon
y represents lat
Therefore you still get wrong results with your linked gist.

why are you writing:
z = np.diag(data)
From the documentation, numpy.diag(v, k=0) extracts a diagonal or construct a diagonal array.
That should be why you only get a "diagonal area" of values...

Related

Rotating a 2d sub-array using numpy without aliasing effects

I would like to rotate only the positive value pixels in my 2d array some degree about the center point. The data represents aerosol concentrations from a plume dispersion model, and the chimney position is the origin of rotation.
I would like to rotate this dispersion pattern given the wind direction.
The concentrations are first calculated for a wind direction along the x-axis and then translated to their rotated position using a 2d linear rotation about the center point of my array (the chimney position) for all points whose concentration is > 0.
The input X,Y to the rotation formula are pixel indexes.
My problem is that the output is aliased since integers become floats. In order to obtain integers, I rounded up or down the output. However, this creates null cells which become increasingly numerous as the angle increases.
Can anyone help me find a solution to my problem? I would like to fix this problem if possible using numpy, or a minimum of packages...
The part of my script that deals with computing the concentrations and rotating the pixel by 50°N is the following. Thank you for your help.
def linear2D_rotation(xcoord,ycoord,azimuth_degrees):
radians = (90 - azimuth_degrees) * (np.pi / 180) # in radians
xcoord_rotated = (xcoord * np.cos(radians)) - (ycoord * np.sin(radians))
ycoord_rotated = (xcoord * np.sin(radians)) + (ycoord * np.cos(radians))
return xcoord_rotated,ycoord_rotated
u_orient = 50 # wind orientation in degres from North
kernel = np.zeros((NpixelY, NpixelX)) # initialize matrix
Yc = int((NpixelY - 1) / 2) # position of central pixel
Xc = int((NpixelX - 1) / 2) # position of central pixel
nk = 0
for Y in list(range(0,NpixelX)):
for X in list(range(0,NpixelY)):
# compute concentrations only in positive x-direction
if (X-Xc)>0:
# nnumber of pixels to origin point (chimney)
dx = ((X-Xc)+1)
dy = ((Y-Yc)+1)
# distance of point to origin (chimney)
DX = dx*pixel_size_X
DY = dy*pixel_size_Y
# compute diffusivity coefficients
Sy, Sz = calcul_diffusivity_coeff(DX, stability_class)
# concentration at ground level below the centerline of the plume
C = (Q / (2 * np.pi * u * Sy * Sz)) * \
np.exp(-(DY / (2 * Sy)) ** 2) * \
(np.exp(-((Z - H) / (2 * Sz)) ** 2) + np.exp(-((Z + H) / (2 * Sz)) ** 2)) # at point away from center line
C = C * 1e9 # convert MBq to Bq
# rotate only if concentration value at pixel is positive
if C > 1e-12:
X_rot, Y_rot = linear2D_rotation(xcoord=dx, ycoord=dy,azimuth_degrees=u_orient)
X2 = int(round(Xc+X_rot))
Y2 = int(round(Yc-Y_rot)) # Y increases downwards
# pixels that fall out of bounds -> ignore
if (X2 > (NpixelX - 1)) or (X2 < 0) or (Y2 > (NpixelY - 1)):
continue
else:
# replace new pixel position in kernel array
kernel[Y2, X2] = C
The original array to be rotated
The rotated array by 40°N showing the data loss
Your problem description is not 100% clear, but here are a few recommendations:
1.) Don't reinvent the wheel. There are standard solutions for things like rotating pixels. Use them! In this case
scipy.ndimage.affine_transform for performing the rotation
a homogeneous coordinate matrix for specifying the rotation
nearest neighbor interpolation (parameter order=0 in code below).
2.) Don't loop where not necessary. The speed you gain by not processing non-positive pixels is nothing against the speed you lose by looping. Compiled functions can ferry around a lot of redundant zeros before hand-written python code catches up with them.
3.) Don't expect a solution that maps pixels one-to-one because it is a fact that there will be points that are no ones nearest neighbor and points that are nearest neighbor to multiple other points. With that in mind, you may want to consider a higher order, smoother interpolation.
Comparing your solution to the standard tools solution we find that the latter
gives a comparable result much faster and without those hole artifacts.
Code (without plotting). Please note that I had to transpose and flipud to align the results :
import numpy as np
from scipy import ndimage as sim
from scipy import stats
def mock_data(n, Theta=50, put_neg=True):
y, x = np.ogrid[-20:20:1j*n, -9:3:1j*n, ]
raster = stats.norm.pdf(y)*stats.norm.pdf(x)
if put_neg:
y, x = np.ogrid[-5:5:1j*n, -3:9:1j*n, ]
raster -= stats.norm.pdf(y)*stats.norm.pdf(x)
raster -= (stats.norm.pdf(y)*stats.norm.pdf(x)).T
return {'C': raster * 1e-9, 'Theta': Theta}
def rotmat(Theta, offset=None):
theta = np.radians(Theta)
c, s = np.cos(theta), np.sin(theta)
if offset is None:
return np.array([[c, -s] [s, c]])
R = np.array([[c, -s, 0], [s, c,0], [0,0,1]])
to, fro = np.identity(3), np.identity(3)
offset = np.asanyarray(offset)
to[:2, 2] = offset
fro[:2, 2] = -offset
return to # R # fro
def f_pp(C, Theta):
m, n = C.shape
clipped = np.maximum(0, 1e9 * data['C'])
clipped[:, :n//2] = 0
M = rotmat(Theta, ((m-1)/2, (n-1)/2))
return sim.affine_transform(clipped, M, order = 0)
def linear2D_rotation(xcoord,ycoord,azimuth_degrees):
radians = (90 - azimuth_degrees) * (np.pi / 180) # in radians
xcoord_rotated = (xcoord * np.cos(radians)) - (ycoord * np.sin(radians))
ycoord_rotated = (xcoord * np.sin(radians)) + (ycoord * np.cos(radians))
return xcoord_rotated,ycoord_rotated
def f_OP(C, Theta):
kernel = np.zeros_like(C)
m, n = C.shape
for Y in range(m):
for X in range(n):
if X > n//2:
c = C[Y, X] * 1e9
if c > 1e-12:
dx = X - n//2 + 1
dy = Y - m//2 + 1
X_rot, Y_rot = linear2D_rotation(xcoord=dx, ycoord=dy,azimuth_degrees=Theta)
X2 = int(round(n//2+X_rot))
Y2 = int(round(m//2-Y_rot)) # Y increases downwards
# pixels that fall out of bounds -> ignore
if (X2 > (n - 1)) or (X2 < 0) or (Y2 > (m - 1)):
continue
else:
# replace new pixel position in kernel array
kernel[Y2, X2] = c
return kernel
n = 100
data = mock_data(n, 70)

Plot random points a specified distance apart

I'm trying to come up with a function that plots n points inside the unit circle, but I need them to be sufficiently spread out.
ie. something that looks like this:
Is it possible to write a function with two parameters, n (number of points) and min_d (minimum distance apart) such that the points are:
a) equidistant
b) no pairwise distance exceeds a given min_d
The problem with sampling from a uniform distribution is that it could happen that two points are almost on top of each other, which I do not want to happen. I need this kind of input for a network diagram representing node clusters.
EDIT: I have found an answer to a) here: Generator of evenly spaced points in a circle in python, but b) still eludes me.
At the time this answer was provided, the question asked for random numbers. This answer thus gives a solution drawing random numbers. It ignores any edits made to the question afterwards.
On may simply draw random points and for each one check if the condition of the minimum distance is fulfilled. If not, the point can be discarded. This can be done until a list is filled with enough points or some break condition is met.
import numpy as np
import matplotlib.pyplot as plt
class Points():
def __init__(self,n=10, r=1, center=(0,0), mindist=0.2, maxtrials=1000 ) :
self.success = False
self.n = n
self.r = r
self.center=np.array(center)
self.d = mindist
self.points = np.ones((self.n,2))*10*r+self.center
self.c = 0
self.trials = 0
self.maxtrials = maxtrials
self.tx = "rad: {}, center: {}, min. dist: {} ".format(self.r, center, self.d)
self.fill()
def dist(self, p, x):
if len(p.shape) >1:
return np.sqrt(np.sum((p-x)**2, axis=1))
else:
return np.sqrt(np.sum((p-x)**2))
def newpoint(self):
x = (np.random.rand(2)-0.5)*2
x = x*self.r-self.center
if self.dist(self.center, x) < self.r:
self.trials += 1
if np.all(self.dist(self.points, x) > self.d):
self.points[self.c,:] = x
self.c += 1
def fill(self):
while self.trials < self.maxtrials and self.c < self.n:
self.newpoint()
self.points = self.points[self.dist(self.points,self.center) < self.r,:]
if len(self.points) == self.n:
self.success = True
self.tx +="\n{} of {} found ({} trials)".format(len(self.points),self.n,self.trials)
def __repr__(self):
return self.tx
center =(0,0)
radius = 1
p = Points(n=40,r=radius, center=center)
fig, ax = plt.subplots()
x,y = p.points[:,0], p.points[:,1]
plt.scatter(x,y)
ax.add_patch(plt.Circle(center, radius, fill=False))
ax.set_title(p)
ax.relim()
ax.autoscale_view()
ax.set_aspect("equal")
plt.show()
If the number of points should be fixed, you may try to run find this number of points for decreasing distances until the desired number of points are found.
In the following case, we are looking for 60 points and start with a minimum distance of 0.6 which we decrease stepwise by 0.05 until there is a solution found. Note that this will not necessarily be the optimum solution, as there is only maxtrials of retries in each step. Increasing maxtrials will of course bring us closer to the optimum but requires more runtime.
center =(0,0)
radius = 1
mindist = 0.6
step = 0.05
success = False
while not success:
mindist -= step
p = Points(n=60,r=radius, center=center, mindist=mindist)
print p
if p.success:
break
fig, ax = plt.subplots()
x,y = p.points[:,0], p.points[:,1]
plt.scatter(x,y)
ax.add_patch(plt.Circle(center, radius, fill=False))
ax.set_title(p)
ax.relim()
ax.autoscale_view()
ax.set_aspect("equal")
plt.show()
Here the solution is found for a minimum distance of 0.15.

Depth Profiling visualization

I'm trying to create a depth profile graph with the variables depth, distance and temperature. The data collected is from 9 different points with known distances between them (distance 5m apart, 9 stations, 9 different sets of data). The temperature readings are according to these 9 stations where a sonde was dropped directly down, taking readings of temperature every 2 seconds. Max depth at each of the 9 stations were taken from the boat also.
So the data I have is:
Depth at each of the 9 stations (y axis)
Temperature readings at each of the 9 stations, at around .2m intervals vertical until the bottom was reached (fill area)
distance between the stations, (x axis)
Is it possible to create a depth profile similar to this? (obviously without the greater resolution in this graph)
I've already tried messing around with ggplot2 and raster but I just can't seem to figure out how to do this.
One of the problems I've come across is how to make ggplot2 distinguish between say 5m depth temperature reading at station 1 and 5m temperature reading at station 5 since they have the same depth value.
Even if you can guide me towards another program that would allow me to create a graph like this, that would be great
[ REVISION ]
(Please comment me if you know more suitable interpolation methods, especially not needing to cut under bottoms data.)
ggplot() needs long data form.
library(ggplot2)
# example data
max.depths <- c(1.1, 4, 4.7, 7.7, 8.2, 7.8, 10.7, 12.1, 14.3)
depth.list <- sapply(max.depths, function(x) seq(0, x, 0.2))
temp.list <- list()
set.seed(1); for(i in 1:9) temp.list[[i]] <- sapply(depth.list[[i]], function(x) rnorm(1, 20 - x*0.5, 0.2))
set.seed(1); dist <- c(0, sapply(seq(5, 40, 5), function(x) rnorm(1, x, 1)))
dist.list <- sapply(1:9, function(x) rep(dist[x], length(depth.list[[x]])))
main.df <- data.frame(dist = unlist(dist.list), depth = unlist(depth.list) * -1, temp = unlist(temp.list))
# a raw graph
ggplot(main.df, aes(x = dist, y = depth, z = temp)) +
geom_point(aes(colour = temp), size = 1) +
scale_colour_gradientn(colours = topo.colors(10))
# a relatively raw graph (don't run with this example data)
ggplot(main.df, aes(x = dist, y = depth, z = temp)) +
geom_raster(aes(fill = temp)) + # geom_contour() +
scale_fill_gradientn(colours = topo.colors(10))
If you want a graph such like you showed, you have to do interpolation. Some packages give you spatial interpolation methods. In this example, I used akima package but you should think seriously that which interpolation methods to use.
I used nx = 300 and ny = 300 in below code but I think it would be better to decide those values carefully. Large nx and ny gives a high resolution graph, but don't foreget real nx and ny (in this example, real nx is only 9 and ny is 101).
library(akima); library(dplyr)
interp.data <- interp(main.df$dist, main.df$depth, main.df$temp, nx = 300, ny = 300)
interp.df <- interp.data %>% interp2xyz() %>% as.data.frame()
names(interp.df) <- c("dist", "depth", "temp")
# draw interp.df
ggplot(interp.df, aes(x = dist, y = depth, z = temp)) +
geom_raster(aes(fill = temp)) + # geom_contour() +
scale_fill_gradientn(colours = topo.colors(10))
# to think appropriateness of interpolation (raw and interpolation data)
ggplot(interp.df, aes(x = dist, y = depth, z = temp)) +
geom_raster(aes(fill = temp), alpha = 0.3) + # interpolation
scale_fill_gradientn(colours = topo.colors(10)) +
geom_point(data = main.df, aes(colour = temp), size = 1) + # raw
scale_colour_gradientn(colours = topo.colors(10))
Bottoms don't match !!I found ?interp says "interpolation only within convex hull!", oops... I'm worrid about the interpolation around the problem-area, is it OK ? If no problem, you need only cut the data under the bottoms. If not, ... I can't answer immediately (below is an example code to cut).
bottoms <- max.depths * -1
# calculate bottom values using linear interpolation
approx.bottoms <- approx(dist, bottoms, n = 300) # n must be the same value as interp()'s nx
# change temp values under bottom into NA
library(dplyr)
interp.cut.df <- interp.df %>% cbind(bottoms = approx.bottoms$y) %>%
mutate(temp = ifelse(depth >= bottoms, temp, NA)) %>% select(-bottoms)
ggplot(interp.cut.df, aes(x = dist, y = depth, z = temp)) +
geom_raster(aes(fill = temp)) +
scale_fill_gradientn(colours = topo.colors(10)) +
geom_point(data = main.df, size = 1)
If you want to use stat_contour
It is harder to use stat_contour than geom_raster because it needs a regular grid form. As far as I see your graph, your data (depth and distance) don't form a regular grid, it means it is much difficult to use stat_contour with your raw data. So I used interp.cut.df to draw a contour plot. And stat_contour have a endemic problem (see How to fill in the contour fully using stat_contour), so you need to expand your data.
library(dplyr)
# 1st: change NA into a temp's out range value (I used 0)
interp.contour.df <- interp.cut.df
interp.contour.df[is.na(interp.contour.df)] <- 0
# 2nd: expand the df (It's a little complex, so please use this function)
contour.support.func <- function(df) {
colname <- names(df)
names(df) <- c("x", "y", "z")
Range <- as.data.frame(sapply(df, range))
Dim <- as.data.frame(t(sapply(df, function(x) length(unique(x)))))
arb_z = Range$z[1] - diff(Range$z)/20
df2 <- rbind(df,
expand.grid(x = c(Range$x[1] - diff(Range$x)/20, Range$x[2] + diff(Range$x)/20),
y = seq(Range$y[1], Range$y[2], length = Dim$y), z = arb_z),
expand.grid(x = seq(Range$x[1], Range$x[2], length = Dim$x),
y = c(Range$y[1] - diff(Range$y)/20, Range$y[2] + diff(Range$y)/20), z = arb_z))
names(df2) <- colname
return(df2)
}
interp.contour.df2 <- contour.support.func(interp.contour.df)
# 3rd: check the temp range (these values are used to define contour's border (breaks))
range(interp.cut.df$temp, na.rm=T) # 12.51622 20.18904
# 4th: draw ... the bottom border is dirty !!
ggplot(interp.contour.df2, aes(x = dist, y = depth, z = temp)) +
stat_contour(geom="polygon", breaks = seq(12.51622, 20.18904, length = 11), aes(fill = ..level..)) +
coord_cartesian(xlim = range(dist), ylim = range(bottoms), expand = F) + # cut expanded area
scale_fill_gradientn(colours = topo.colors(10)) # breaks's length is 11, so 10 colors are needed
# [Note]
# You can define the contour's border values (breaks) and colors.
contour.breaks <- c(12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5)
# = seq(12.5, 20.5, 1) or seq(12.5, 20.5, length = 9)
contour.colors <- c("darkblue", "cyan3", "cyan1", "green3", "green", "yellow2","pink", "darkred")
# breaks's length is 9, so 8 colors are needed.
# 5th: vanish the bottom border by bottom line
approx.df <- data.frame(dist = approx.bottoms$x, depth = approx.bottoms$y, temp = 0) # 0 is dummy value
ggplot(interp.contour.df2, aes(x = dist, y = depth, z = temp)) +
stat_contour(geom="polygon", breaks = contour.breaks, aes(fill = ..level..)) +
coord_cartesian(xlim=range(dist), ylim=range(bottoms), expand = F) +
scale_fill_gradientn(colours = contour.colors) +
geom_line(data = approx.df, lwd=1.5, color="gray50")
bonus: legend technic
library(dplyr)
interp.contour.df3 <- interp.contour.df2 %>% mutate(temp2 = cut(temp, breaks = contour.breaks))
interp.contour.df3$temp2 <- factor(interp.contour.df3$temp2, levels = rev(levels(interp.contour.df3$temp2)))
ggplot(interp.contour.df3, aes(x = dist, y = depth, z = temp)) +
stat_contour(geom="polygon", breaks = contour.breaks, aes(fill = ..level..)) +
coord_cartesian(xlim=range(dist), ylim=range(bottoms), expand = F) +
scale_fill_gradientn(colours = contour.colors, guide = F) + # add guide = F
geom_line(data = approx.df, lwd=1.5, color="gray50") +
geom_point(aes(colour = temp2), pch = 15, alpha = 0) + # add
guides(colour = guide_legend(override.aes = list(colour = rev(contour.colors), alpha = 1, cex = 5))) + # add
labs(colour = "temp") # add
You want to treat this as a 3-D surface with temperature as the z dimension. The given plot is a contour plot and it looks like ggplot2 can do that with stat_contour.
I'm not sure how the contour lines are computed (often it's linear interpolation along a Delaunay triangulation). If you want more control over how to interpolate between your x/y grid points, you can calculate a surface model first and feed those z coordinates into ggplot2.

Using numpy.trapz() to calculate a pdf

I have some polar [R,theta] data, that I want to express as a pdf.
As I understand it, I simply normalize the data, so its integral is 1.
I am using numpy.trapz() method, but am a bit unsure of the syntax.
The code below shows what I have tried, I expect the outputs to be in a range ( 0, 1 > but they seem a bit high.
Am I using .trapz() method correctly?
Is .trapz() appropriate for circular data?
theta = np.linspace( -np.pi, np.pi, 50 )
r = np.array([ 1.23445554e-02, 3.03557798e-02, 7.02699393e-02,
1.51352457e-01, 3.00238850e-01, 5.43818199e-01,
8.93133849e-01, 1.32293971e+00, 1.76077447e+00,
2.10102936e+00, 2.24555703e+00, 2.15016660e+00,
1.84666100e+00, 1.42543142e+00, 9.91689535e-01,
6.24126941e-01, 3.56994042e-01, 1.86663166e-01,
8.98562553e-02, 4.01629846e-02, 1.68354083e-02,
6.69424846e-03, 2.55748908e-03, 9.52021934e-04,
3.50547486e-04, 1.29726513e-04, 4.90546282e-05,
1.92776373e-05, 8.00850696e-06, 3.57673721e-06,
1.74551297e-06, 9.45084654e-07, 5.75501932e-07,
3.98658528e-07, 3.16843272e-07, 2.90421340e-07,
3.07486145e-07, 3.75264328e-07, 5.25073662e-07,
8.35385632e-07, 1.49531795e-06, 2.97409444e-06,
6.48232116e-06, 1.52539070e-05, 3.81503341e-05,
9.97843762e-05, 2.68504223e-04, 7.31213584e-04,
1.98302971e-03, 5.27234229e-03
]
)
r_pdf = r / np.trapz( r, x = theta )
print r_pdf.max()
fig = plt.figure()
ax = fig.add_subplot( 111, polar = True )
ax.plot( theta, r, lw = 3 )
ax.plot( theta, r_pdf, lw = 3 )

Is there any way to use bivariate colormaps in matplotlib?

In other words, I want to make a heatmap (or surface plot) where the color varies as a function of 2 variables. (Specifically, luminance = magnitude and hue = phase.) Is there any native way to do this?
Some examples of similar plots:
Several good examples of exactly(?) what I want to do.
More examples from astronomy, but with non-perceptual hue
Edit: This is what I did with it: https://github.com/endolith/complex_colormap
imshow can take an array of [r, g, b] entries. So you can convert the absolute values to intensities and phases - to hues.
I will use as an example complex numbers, because for it it makes the most sense. If needed, you can always add numpy arrays Z = X + 1j * Y.
So for your data Z you can use e.g.
imshow(complex_array_to_rgb(Z))
where (EDIT: made it quicker and nicer thanks to this suggestion)
def complex_array_to_rgb(X, theme='dark', rmax=None):
'''Takes an array of complex number and converts it to an array of [r, g, b],
where phase gives hue and saturaton/value are given by the absolute value.
Especially for use with imshow for complex plots.'''
absmax = rmax or np.abs(X).max()
Y = np.zeros(X.shape + (3,), dtype='float')
Y[..., 0] = np.angle(X) / (2 * pi) % 1
if theme == 'light':
Y[..., 1] = np.clip(np.abs(X) / absmax, 0, 1)
Y[..., 2] = 1
elif theme == 'dark':
Y[..., 1] = 1
Y[..., 2] = np.clip(np.abs(X) / absmax, 0, 1)
Y = matplotlib.colors.hsv_to_rgb(Y)
return Y
So, for example:
Z = np.array([[3*(x + 1j*y)**3 + 1/(x + 1j*y)**2
for x in arange(-1,1,0.05)] for y in arange(-1,1,0.05)])
imshow(complex_array_to_rgb(Z, rmax=5), extent=(-1,1,-1,1))
imshow(complex_array_to_rgb(Z, rmax=5, theme='light'), extent=(-1,1,-1,1))
imshow will take an NxMx3 (rbg) or NxMx4 (grba) array so you can do your color mapping 'by hand'.
You might be able to get a bit of traction by sub-classing Normalize to map your vector to a scaler and laying out a custom color map very cleverly (but I think this will end up having to bin one of your dimensions).
I have done something like this (pdf link, see figure on page 24), but the code is in MATLAB (and buried someplace in my archives).
I agree a bi-variate color map would be useful (primarily for representing very dense vector fields where your kinda up the creek no matter what you do).
I think the obvious extension is to let color maps take complex arguments. It would require specialized sub-classes of Normalize and Colormap and I am going back and forth on if I think it would be a lot of work to implement. I suspect if you get it working by hand it will just be a matter of api wrangling.
I created an easy to use 2D colormap class, that takes 2 NumPy arrays and maps them to an RGB image, based on a reference image.
I used #GjjvdBurg's answer as a starting point. With a bit of work, this could still be improved, and possibly turned into a proper Python module - if you want, feel free to do so, I grant you all credits.
TL;DR:
# read reference image
cmap_2d = ColorMap2D('const_chroma.jpeg', reverse_x=True) # , xclip=(0,0.9))
# map the data x and y to the RGB space, defined by the image
rgb = cmap_2d(data_x, data_y)
# generate a colorbar image
cbar_rgb = cmap_2d.generate_cbar()
The ColorMap2D class:
class ColorMap2D:
def __init__(self, filename: str, transpose=False, reverse_x=False, reverse_y=False, xclip=None, yclip=None):
"""
Maps two 2D array to an RGB color space based on a given reference image.
Args:
filename (str): reference image to read the x-y colors from
rotate (bool): if True, transpose the reference image (swap x and y axes)
reverse_x (bool): if True, reverse the x scale on the reference
reverse_y (bool): if True, reverse the y scale on the reference
xclip (tuple): clip the image to this portion on the x scale; (0,1) is the whole image
yclip (tuple): clip the image to this portion on the y scale; (0,1) is the whole image
"""
self._colormap_file = filename or COLORMAP_FILE
self._img = plt.imread(self._colormap_file)
if transpose:
self._img = self._img.transpose()
if reverse_x:
self._img = self._img[::-1,:,:]
if reverse_y:
self._img = self._img[:,::-1,:]
if xclip is not None:
imin, imax = map(lambda x: int(self._img.shape[0] * x), xclip)
self._img = self._img[imin:imax,:,:]
if yclip is not None:
imin, imax = map(lambda x: int(self._img.shape[1] * x), yclip)
self._img = self._img[:,imin:imax,:]
if issubclass(self._img.dtype.type, np.integer):
self._img = self._img / 255.0
self._width = len(self._img)
self._height = len(self._img[0])
self._range_x = (0, 1)
self._range_y = (0, 1)
#staticmethod
def _scale_to_range(u: np.ndarray, u_min: float, u_max: float) -> np.ndarray:
return (u - u_min) / (u_max - u_min)
def _map_to_x(self, val: np.ndarray) -> np.ndarray:
xmin, xmax = self._range_x
val = self._scale_to_range(val, xmin, xmax)
rescaled = (val * (self._width - 1))
return rescaled.astype(int)
def _map_to_y(self, val: np.ndarray) -> np.ndarray:
ymin, ymax = self._range_y
val = self._scale_to_range(val, ymin, ymax)
rescaled = (val * (self._height - 1))
return rescaled.astype(int)
def __call__(self, val_x, val_y):
"""
Take val_x and val_y, and associate the RGB values
from the reference picture to each item. val_x and val_y
must have the same shape.
"""
if val_x.shape != val_y.shape:
raise ValueError(f'x and y array must have the same shape, but have {val_x.shape} and {val_y.shape}.')
self._range_x = (np.amin(val_x), np.amax(val_x))
self._range_y = (np.amin(val_y), np.amax(val_y))
x_indices = self._map_to_x(val_x)
y_indices = self._map_to_y(val_y)
i_xy = np.stack((x_indices, y_indices), axis=-1)
rgb = np.zeros((*val_x.shape, 3))
for indices in np.ndindex(val_x.shape):
img_indices = tuple(i_xy[indices])
rgb[indices] = self._img[img_indices]
return rgb
def generate_cbar(self, nx=100, ny=100):
"generate an image that can be used as a 2D colorbar"
x = np.linspace(0, 1, nx)
y = np.linspace(0, 1, ny)
return self.__call__(*np.meshgrid(x, y))
Usage:
Full example, using the constant chroma reference taken from here as a screenshot:
# generate data
x = y = np.linspace(-2, 2, 300)
xx, yy = np.meshgrid(x, y)
ampl = np.exp(-(xx ** 2 + yy ** 2))
phase = (xx ** 2 - yy ** 2) * 6 * np.pi
data = ampl * np.exp(1j * phase)
data_x, data_y = np.abs(data), np.angle(data)
# Here is the 2D colormap part
cmap_2d = ColorMap2D('const_chroma.jpeg', reverse_x=True) # , xclip=(0,0.9))
rgb = cmap_2d(data_x, data_y)
cbar_rgb = cmap_2d.generate_cbar()
# plot the data
fig, plot_ax = plt.subplots(figsize=(8, 6))
plot_extent = (x.min(), x.max(), y.min(), y.max())
plot_ax.imshow(rgb, aspect='auto', extent=plot_extent, origin='lower')
plot_ax.set_xlabel('x')
plot_ax.set_ylabel('y')
plot_ax.set_title('data')
# create a 2D colorbar and make it fancy
plt.subplots_adjust(left=0.1, right=0.65)
bar_ax = fig.add_axes([0.68, 0.15, 0.15, 0.3])
cmap_extent = (data_x.min(), data_x.max(), data_y.min(), data_y.max())
bar_ax.imshow(cbar_rgb, extent=cmap_extent, aspect='auto', origin='lower',)
bar_ax.set_xlabel('amplitude')
bar_ax.set_ylabel('phase')
bar_ax.yaxis.tick_right()
bar_ax.yaxis.set_label_position('right')
for item in ([bar_ax.title, bar_ax.xaxis.label, bar_ax.yaxis.label] +
bar_ax.get_xticklabels() + bar_ax.get_yticklabels()):
item.set_fontsize(7)
plt.show()
I know this is an old post, but want to help out others that may arrive late. Below is a python function to implement complex_to_rgb from sage. Note: This implementation isn't optimal, but it is readable. See links: (examples)(source code)
Code:
import numpy as np
def complex_to_rgb(z_values):
width = z_values.shape[0]
height = z_values.shape[1]
rgb = np.zeros(shape=(width, height, 3))
for i in range(width):
row = z_values[i]
for j in range(height):
# define value, real(value), imag(value)
zz = row[j]
x = np.real(zz)
y = np.imag(zz)
# define magnitued and argument
magnitude = np.hypot(x, y)
arg = np.arctan2(y, x)
# define lighness
lightness = np.arctan(np.log(np.sqrt(magnitude) + 1)) * (4 / np.pi) - 1
if lightness < 0:
bot = 0
top = 1 + lightness
else:
bot = lightness
top = 1
# define hue
hue = 3 * arg / np.pi
if hue < 0:
hue += 6
# set ihue and use it to define rgb values based on cases
ihue = int(hue)
# case 1
if ihue == 0:
r = top
g = bot + hue * (top - bot)
b = bot
# case 2
elif ihue == 1:
r = bot + (2 - hue) * (top - bot)
g = top
b = bot
# case 3
elif ihue == 2:
r = bot
g = top
b = bot + (hue - 2) * (top - bot)
# case 4
elif ihue == 3:
r = bot
g = bot + (4 - hue) * (top - bot)
b = top
# case 5
elif ihue == 4:
r = bot + (hue - 4) * (top - bot)
g = bot
b = top
# case 6
else:
r = top
g = bot
b = bot + (6 - hue) * (top - bot)
# set rgb array values
rgb[i, j, 0] = r
rgb[i, j, 1] = g
rgb[i, j, 2] = b
return rgb