performBlockAndWait creates deadlock - objective-c

I am writing a function that performs some CoreData stuff. I want the function to return only after all the CoreData operations have executed. The CoreData stuff involves creating an object in a background context, then doing some more stuff in the parent context:
+ (void) myFunction
NSManagedObjectContext *backgroundContext = [DatabaseDelegate sharedDelegate].backgroundContext;
[backgroundContext performBlockAndWait:^{
MyObject *bla = create_my_object_in:backgroundContext;
[backgroundContext obtainPermanentIDsForObjects:[[backgroundContext insertedObjects] allObjects] error:nil];
[backgroundContext save:nil];
[[DatabaseDelegate sharedDelegate].parent.managedObjectContext performBlockAndWait:^{
[[DatabaseDelegate sharedDelegate].parent updateChangeCount:UIDocumentChangeDone];
// Do some more stuff
NSOperationQueue *queue = [[NSOperationQueue alloc] init];
[queue addOperation:someOperation];
}];
}];
return;
}
I want the return to only happen after [queue addOperation:someOperation].
This seems to work most of the cases, but I have had one case when this function never returned. It seemed like it was deadlocked, and I suspect it is because of performBlockAndWait.
My questions are:
(1) Can someone explain why this deadlock occurs?
and
(2) What is the right way of achieving the same functionality? The requirement is that myFunction returns only after both blocks have been executed.
Thank you!

Let's imagine you are calling myFunction from the main thread. Let's imagine [DatabaseDelegate sharedDelegate].parent.managedObjectContext is scheduled on the main thread.
With [backgroundContext performBlockAndWait:] you are scheduling a block on the context private background queue. Blocking the main thread.
With [.parent.managedObjectContext performBlockAndWait:], you are scheduling a block on the main thread, blocking the private queue.
But the main thread is blocked already. So the block will never execute. And performBlockAndWait: will never returns.
Deadlock.
Use asynchronously scheduled blocks, with completion blocks.

You don't have to wait. Your background work executes, then, before it is done, it kicks off work on the main thread, and before it is done, it does your "someOperation." You could replace it with async and it will still work.
Looking at this code, there is no reason to use the blocking versions...
+ (void) myFunction {
NSManagedObjectContext *backgroundContext = [DatabaseDelegate sharedDelegate].backgroundContext;
[backgroundContext performBlock:^{
// Asynchronous... but every command in this block will run before this
// block returns...
MyObject *bla = create_my_object_in:backgroundContext;
[backgroundContext obtainPermanentIDsForObjects:[[backgroundContext insertedObjects] allObjects] error:nil];
[backgroundContext save:nil];
[[DatabaseDelegate sharedDelegate].parent.managedObjectContext performBlock:^{
// Asynchronous, but this whole block will execute...
[[DatabaseDelegate sharedDelegate].parent updateChangeCount:UIDocumentChangeDone];
// Do some more stuff
// This will not run until after the stuff above in this block runs...
NSOperationQueue *queue = [[NSOperationQueue alloc] init];
[queue addOperation:someOperation];
}];
// You will reach here BEFORE the code in the previous block executes, but
// the "someOperation" is in that block, so it will not run until that
// block is done.
}];
// Likewise, you will reach here before the above work is done, but everything
// will still happen in the right order relative to each other.
return;
}

Related

What could cause UI updates via dispatch_async to fail when called from within a background queue block?

Can anybody see a reason why this code would work fine to update UI:
__block NSDictionary *result = nil;
dispatch_semaphore_t sema = dispatch_semaphore_create(0);
[[SomeService sharedInstance] doSomethingGreatWithReplyBlock:^(NSDictionary * response) {
result = response;
dispatch_semaphore_signal(sema);
}];
dispatch_semaphore_wait(sema, DISPATCH_TIME_FOREVER);
dispatch_async(dispatch_get_main_queue(), ^{
[self updateDisplay:result];
});
But this one won't?
__block NSDictionary *result = nil;
[[SomeService sharedInstance] doSomethingGreatWithReplyBlock:^(NSDictionary * response) {
dispatch_async(dispatch_get_main_queue(), ^{
[self updateDisplay:response];
});
}];
Isn't this exactly the same? In the first example I'm waiting for the async operation to finish using a semaphore. Then dispatch_async on the main queue.
In the second one I'm calling dispatch_async (also on the main queue) directly from within the other block (which runs on some background queue). This one still calls the updateDisplay method fine - however it doesn't actually update the UI. It feels like some main thread update issue however [NSThread isMainThread] still returns true...
Is there any obvious difference I'm missing here? I'm pretty lost here and would appreciate any explanation. I have never observed such weird behavior before.

Objective-C Semaphore Issues?

I've got this code:
dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
[self.skView.scene fadeOutWithDuration:FADE_SEC completion:^ {
dispatch_semaphore_signal(semaphore);
}];
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
[self startGame];
And unfortunately, the semaphore is not being signaled. I have no idea why...
Here's the fadeOutWithDuration:completion: code:
- (void) fadeOutWithDuration:(NSTimeInterval)duration completion:(void (^)(void))predicate {
SKAction * action = [SKAction fadeAlphaTo:0.0 duration:duration];
[self runAction:action completion:predicate];
}
I previously had [self startGame] in the completion block, but there appeared to be a memory leak occurring in this block of code, so I decided to use a semaphore instead to ensure that the block wasn't retaining anything. Any idea on why the semaphore isn't being signaled?
Thanks in advance!
The scene executes its per-frame processing on the main thread by registering an observer with the main thread's run loop. You're blocking the main thread by calling dispatch_semaphore_wait on it, so the run loop doesn't continue running and get to call the scene's observer.
The solution is to not block the main thread. Move [self startGame] back into the completion block, and fix the memory leak.
The standard pattern for avoiding a retain cycle (and ensuing memory leak) in a completion block looks like this:
__weak MyClass *weakSelf = self;
[self.skView.scene fadeOutWithDuration:FADE_SEC completion:^ {
MyClass *self = weakSelf;
[self startGame];
}];
Replace MyClass with the actual class of self.

NSOperationQueue error: Thread 1: EXC_BAD_ACCESS (code = 2, address = 0x4)

I like to create an NSOperationQueue, the NSOperatioQueue should refresh a UILable, I created this code:
NSOperationQueue * ramQueue = [NSOperationQueue alloc];
[ramQueue addOperationWithBlock:^{
while (TRUE) {
//Creating String
NSOperationQueue *main = [NSOperationQueue mainQueue];
[main addOperationWithBlock:^{
//Refresh Label
}];
}
}];
But it wont work, the label isnt showing the new strings. is is showing an error here: [ramQueue addOperationWithBlock:^{
Anyone know how to fix this?
OK, I wanna thank Rob, for pointing me in the right direction!
here is my right code:
First of all I created [NSTimer scheduledTimerWithTimeInterval:2 target:self selector:#selector(updateRam) userInfo:nil repeats:YES]; instead of the while(TRUE){} loop. then I corrected my NSOperationQueue code like this:
-(void)updateRam {
NSOperationQueue * ramQueue = [[NSOperationQueue alloc] init];
[ramQueue addOperationWithBlock:^{
//Create String
NSOperationQueue *main = [NSOperationQueue mainQueue];
[main addOperationWithBlock:^{
//Refresh Label
}];
}];
}
Thanks agan!
A couple of thoughts:
That [NSOperationQueue alloc] should be [[NSOperationQueue alloc] init].
I'd generally advise against a never ending while loop. If you want to repeatedly do something, a repeating timer (at some reasonable rate, probably not more than 10-20 times per second) might be a better construct. If you use the while loop construct, you could easily end up posting operations to the main queue faster than the main loop can process them. (It depends upon what's inside that while loop.)
If you stay with that while loop (which, again, I'd discourage you from doing), you probably want an #autoreleasepool inside there so any auto released objects get deallocated.
[ramQueue addOperationWithBlock:^{
while (TRUE) {
#autoreleasepool {
//Creating String
NSOperationQueue *main = [NSOperationQueue mainQueue];
[main addOperationWithBlock:^{
//Refresh Label
}];
}
}
}];
You might even want to use semaphores to ensure the background operation doesn't post events too quickly.
Probably unrelated to your problem, but if you're doing anything that is updating any shared resources (e.g. changing any class properties or ivars), make sure to synchronize those with the main queue. You can do that by dispatching those updates back to the main queue or employ some locking mechanism.

Waiting for condition to continue

I have a method that I add to a GCD queue that I have created (so it's a serial queue) and then run it async. From within that block of code I make a dispatch to the main queue, when that block of code dispatched to the main queue is complete I set a BOOL flag to YES, so that I further down in my code can check if this condition is YES then I can continue to the next method. Here is the code in short:
dispatch_queue_t queue = dispatch_queue_create("ProcessSerialQueue", 0);
dispatch_async(queue, ^{
Singleton *s = [Singleton sharedInstance];
dispatch_sync(dispatch_get_main_queue(), ^{
[s processWithCompletionBlock:^{
// Process is complete
processComplete = YES;
}];
});
});
while (!processComplete) {
NSLog(#"Waiting");
}
NSLog(#"Ready for next step");
However this does not work, because dispatch_sync is never able to run the code on the main queue. Is this because I'm running a while loop on the main queue (rendering it busy)?
However if I change the implementation of the while loop to this:
while (!processComplete) {
NSLog(#"Waiting")
NSDate *date = [NSDate distantFuture];
[[NSRunLoop currentRunLoop] runMode:NSDefaultRunLoopMode beforeDate:date];
}
It works without a glitch. Is this an acceptable solution for this scenario? Can I do it any other preferred way? What kind of magic stuff does NSRunLoop do? I need to understand this better.
Part of the main thread's NSRunLoop job is to run any blocks queued on the main thread. By spinning in a while-loop, you're preventing the runloop from progressing, so the queued blocks are never run unless you explicitly make the loop run yourself.
Runloops are a fundemental part of Cocoa, and the documentation is pretty good, so I'd reccommend reading it.
As a rule, I'd avoid manually invoking the runloop as you're doing. You'll waste memory and make make things complicated very quickly if you have multiple manual invocations running on top of one another.
However, there is a much better way of doing this. Split your method into a -process and a -didProcess method. Start the async operation with your -process method, and when it completes, call -didProcess from the completion block. If you need to pass variables from one method to the other, you can pass them as arguments to your -didProcess method.
Eg:
dispatch_queue_t queue = dispatch_queue_create("ProcessSerialQueue", 0);
dispatch_async(queue, ^{
Singleton *s = [Singleton sharedInstance];
dispatch_sync(dispatch_get_main_queue(), ^{
[s processWithCompletionBlock:^{
[self didProcess];
}];
});
});
You might also consider making your singleton own the dispatch queue and make it responsible for handling the dispatch_async stuff, as it'll save on all those nasty embedded blocks if you're always using it asynchronously.
Eg:
[[Singleton sharedInstance] processAyncWithCompletionBlock:^{
NSLog(#"Ready for next step...");
[self didProcess];
}];
Doing something like what you posted will most likely freeze the UI. Rather than freezing up everything, call your "next step" code in a completion block.
Example:
dispatch_queue_t queue = dispatch_queue_create("ProcessSerialQueue", 0);
dispatch_queue_t main = dispatch_get_main_queue();
dispatch_async(queue, ^{
Singleton *s = [Singleton sharedInstance];
dispatch_async(dispatch_get_main_queue(), ^{
[s processWithCompletionBlock:^{
// Next step code
}];
});
});
Don't go creating a loop like that waiting for a value inside a block, variables in blocks are read only, instead call your completion code from inside the block.
dispatch_async(queue, ^{
Singleton *s = [Singelton sharedInstance];
[s processWithCompletionBlock:^{
//process is complete
dispatch_sync(dispatch_get_main_queue(), ^{
//do something on main queue....
NSLog(#"Ready for next step");
});
}];
});
NSLog(#"waiting");

How to join threads in Objective C without using delegates/callback?

Is there a clean way of joining threads in Objective C much like "Thread.join" in Java? I found the method performSelector:onThread:withObject:waitUntilDone: but the limitation of this is I can't call the "blocking" on a different line because I want to do something like this:
[dispatch Thread A];
[process something on main thread];
[wait for Thread A to finish before proceeding];
Thank you in advance.
I'm not aware of any Cocoa API to do this, but it wouldn't be too difficult to do with NSThread, pretty easy to do with a lock, and even easier to do with Grand Central Dispatch.
NSThread
NSThread * otherThread = [[NSThread alloc] initWithTarget:self selector:#selector(methodToPerformInBackground:) object:aParameter];
[otherThread start];
//do some stuff
while ([otherThread isFinished] == NO) {
usleep(1000);
}
[otherThread release];
NSLock
NSLock * lock = [[NSLock alloc] init];
//initiate the background task, which should immediately lock the lock and unlock when done
//do some stuff
[lock lock]; //this will pause until the background stuff unlocks
[lock unlock];
[lock release];
Grand Central Dispatch
dispatch_group_t myGroup = dispatch_group_create();
dispatch_group_async(myGroup, dispatch_get_global_queue(), ^{
//stuff to do in the background
});
//do some stuff
dispatch_group_wait(myGroup, DISPATCH_TIME_FOREVER);
dispatch_release(myGroup);
NSConditionLock is the answer to my question, Sorry Dave DeLong, but I cannot use:
"while ([otherThread isFinished] == NO) "
-- because I need fast continuous processing and cannot use sleep.
NSLock
-- because as you said it "initiate the background task, which should immediately lock the lock and unlock when done", this is not a solution because I tried it and we are not sure if the subthread will execute last before the lock-unlock-release on main thread, I ended up getting random errors.
Grand Central Dispatch
--because it's only available in IOS4 and Snow Leopard 10.6, I'm using a lower version.
But your answer gave me the idea and thank you very much for it, so I just "upped" you.
I ended up doing this:
#define T_START 0
#define T_FINISHED 1
-(void) updateVerticalScopeBackground: (id) aParam {
[lockForThread lock];
NSAutoreleasePool *pool = [NSAutoreleasePool new];
//do something
[pool release];
[lockForThread unlockWithCondition:T_FINISHED];
}
-(void) sumFunc {
lockForThread = [[NSConditionLock alloc]
initWithCondition: T_START];
NSThread* updateVerticalScope = [[NSThread alloc] initWithTarget:self selector:#selector(updateVerticalScopeBackground:) object:nil];
[updateVerticalScope start];
//do some processing
[lockForThread lockWhenCondition:T_FINISHED];
[lockForThread unlockWithCondition:T_FINISHED];
[lockForThread release];
}
You could use NSCondition signal/wait.
Could you use a lock to do this? In other words something like this (pseudocode)
create an object to lock on, visible to both threads
dispatch thread A; thread A immediately takes the lock and keeps it for its duration
process something on main thread
main thread attempts to take the lock (this will block until Thread A releases it)
after acquiring the lock, main thread releases it and continues on
You never want your main thread to be blocked waiting for another thread. At least you don't in any application with a user interface because, if the main thread is blocked, your application is frozen.
It would be far better for the main thread to start the background thread, do the other stuff it needs to do and then return to the run loop. The background thread would notify the main thread of completion by sending -performSelectorOnMainThread:waitUntilDone: