I'm working on an iOS app using C and Objective-C, and I want to write a very small piece of code that will be executed thousands of times from more than one place. Is it safe to make this an inline function and be sure that it will always be expanded (I won't ever be taking its address) or should I make it a macro? The code is small and it will be executed very frequently, so I'd like to make sure I won't end up with thousands of function calls for it, but still I'd like the type safety of the function approach if possible...
If you want to be sure that a function is inlined, make it "extern inline" (this is a GNU-C feature). Such functions are only used for inlining; the compiler will never generate a "real" function for it. Thus, if the inlining fails, you should be getting linker errors. I assume clang has "inherited" this feature.
In general, always use inline instead of macros, if possible. There's a reason why many C-compilers had it for ages, and C++ finally added it as a core feature; it makes things a lot safer and reliable to use. There are still things that need macros, but those are few and far between.
Yes, you should use an inline function over a macro.
The performance will be identical to a macro (the code is inline, after all) and you'll get type safety as well.
N.B., this assumes that your function is simple enough for the compiler to inline. gcc's -Winline option warns if this isn't the case; not sure what flags do the same on your platform.
Also see this post for cases when you might prefer a macro (e.g., deferred evaluation)--but based on your question it sounds like inline function is the clear choice.
I may be wrong, but I understand a compiler can only inline functions which are in the same source file. If your inline function is in file A and you're trying to use it elsewhere, it cannot be inlined, unless the linker does link-time optimization.
This is because the compiler only compiles one C file at a time into one object file. It cannot obtain the inlined function from another object file, because firstly, it may not yet have been compiled and secondly, it wouldn't know which object file to look for anyway.
Related
Reading Idris2 code I've seen several cases of functions "decorated" with %inline and also %tcinline I've been searching for a clear explanation about it but haven't found anything except that it "can" be used for giving some "hints" to help on foreign calls, but it's not clear what's the main purpose of it and when it should be used or when should not be used.
Additionally it would be really good to know if these "decorators" which happen to start with % have any common purpose.
From the change log:
New function flag %tcinline which means that the function should be inlined for the purposes of totality checking (but otherwise not inlined). This can be used as a hint for totality checking, to make the checker look inside functions that it otherwise might not.
From the documentation on pragmas:
%inline Instruct the compiler to inline the following definition when it is applied. It is generally best to let the compiler and the backend you are using optimize code based on its predetermined rules, but if you want to
force a function to be inlined when it is called, this pragma will force it.
Suppose I have a function (in Kotlin over Java):
fun <E> myFun() = ...
where E is a general type I know nothing about. Can I determine within this function whether there exists an extension function E.extFun()? And if so, how?
I very much doubt this is possible.
Note that extension functions are resolved statically, at compile time.
And that they're dependent on the extension function being in scope, usually via a relevant import. In particular, it's possible to have more than one extension function with the same name for the same class, as long as they're defined in different places; the one that's in scope will get called.
Within your function, you won't have access to any of that context. So even if you use reflection (which is the usual, and much-abused, ‘get out of jail free card’ for this sort of issue), you still won't be able to find the relevant extension function(s). (Not unless you have prior knowledge of where they might be defined — but in that case, you can probably use that knowledge to come up with a better approach.)
So while I can't say for certain, it seems highly unlikely.
Why do you want to determine this? What are you trying to achieve by it?
I have been looking in Rakudo source for the implementation of require, first out of curiosity and second because I wanted to know if it was returning something.
I looked up sub require and it returned this hit, which actually seems to be the source for require, but it's called sub REQUIRE_IMPORT. It returns Nil and is declared as such, which pretty much answers my original question. But now my question is: Where's the mapping from that sub to require? Is it really the implementation for that function? Are there some other functions that are declared that way?
require is not a sub, but rather a statement control (so, in the same category of things like use, if, for, etc.) It is parsed by the Perl 6 grammar and there are a few different cases that are accepted. It is compiled in the Perl 6 actions, which has quite a bit to handle.
Much of the work is delegated to the various CompUnit objects, which are also involved with use/need. It also has to take care of stubbing symbols that the require will bring in, since the set of symbols in a given lexical scope is fixed at compile time, and the REQUIRE_IMPORT utility sub is involved with the runtime symbol import too.
The answer to your question as to what it will evaluate to comes at the end of the method:
$past.push($<module_name>
?? self.make_indirect_lookup($longname.components())
!! $<file>.ast);
Which means:
If it was a require Some::Module then evaluate to a lookup of Some::Module
If it was a require $file style case, evaluate to the filename
I'm aware this might be a broad question (there's no specific code for you to look at), but I'm hoping I'd get some insights as to what to do, or how to approach the problem.
To keep things simple, suppose the compiler that I'm writing performs these three steps:
parse (and bind all variables)
typecheck
codegen
Also the language that I'm building the compiler for wants to support late-analysis/late-binding (ie., it has a function that takes a String, which is to be compiled and executed as a piece of source-code during runtime).
Now during parse-phase, I have a piece of context that I need to keep around till run-time for the sole benefit of the aforementioned function (because it needs to parse and typecheck its argument in that context).
So the question, how should I do this? What do other compilers do?
Should I just serialise the context object to disk (codegen for it) and resurrect it during run-time or something?
Thanks
Yes, you'll need to emit the type information (or other context, you weren't very specific) in your object/executable files, so that your eval can read it at runtime. You might look at Java's .class file format for inspiration; Java doesn't have eval as such, but you can dynamically spin new bytecode at runtime that must be linked in a type-safe manner. David Conrad's comment is spot-on: this information can also be used to implement reflection, if your language has such a feature.
That's as much as I can help you without more specifics.
I am programming in elisp, and I would like to associate a symbol with a function such that an attempt to access the variable instead calls the function. In particular, I want to trigger a special error message when lisp code attempts to access a certain variable. Is there a way to do this?
Example: suppose I want the variable current-time to evaluate to whatever (current-time-string) evaluates to at the time the variable is accessed. Is this possible?
Note that I do not control the code that attempts to access the variable, so that code could be compiled, so walking the tree and manually replacing variable accesses with function calls is not really an option.
You are looking for the Common Lisp define-symbol-macro.
Emacs Lisp lacks this feature, you cannot accomplish what you are trying to do.
However, not all is lost if you just want an error on accessing a variable.
Just makunbound it and access will error out (unless, of course, someone else nds it first).
I don't think you can do that.
As Sam says, define-symbol-macro would be the closest thing in Lisp (tho you make it sound like the accesses might be compiled beforehand, in which case even define-symbol-macro would be powerless). The closest thing in Elisp would be cl-symbol-macrolet, but that is even more limiting than define-symbol-macro since it has to be placed lexically around the accesses.