Is it possible to override property's method? - objective-c

I need to add some codes when MyClass's string value is changed.
So I'm trying to override a MyClass's string property method.
But I have no idea.. so I do like following.
Is it correct?
How to override property's method?
#interface MyClass{
NSString *string;
}
#property(retain, nonatomic) NSString *string;
#end
#implementation MyClass
- (void)setString:(NSString*)newString{
// want to add some codes.
[self setString:newString]; <= Is this correct?
}
#end

- (void)setString:(NSString*)newString{
// want to add some codes.
string = newString; //This is the setter method!
// You will need to consider memory management etc.
}
What you are probably more up to is this:
- (void)setString:(NSString*)newString{
// want to add some codes.
[super setString:newString];
}
[self setString:newString] at this place would be a an endless recursive loop. [super setString:newString] should call the superlass' setter. However, I never did that myself.

What you are trying to do is not to override (no subclass are involve in your code snippet).
What is in your code is just the declaration #interface and the definition #implementation. It have the same meaning and utility to the declaration/definition in C where you put declaration in a .h file and definition in a .c file.
Assuming that your are speaking of how to synthesize, your code is almost correct. You are just missing the getter - (NSString *) string; or you what it readonly.
As for how to do correctly the assignment you should use the =
- (void)setString:(NSString*)newString{
// want to add some codes.
string = newString; // Correct way of doing it
}
There is 2 way to synthesize a propertie, either by defining the setter and getter by hand or either by using the syntactic sugar #synthesize.
For a better understanding consider that #property and #synthesize are both syntactic sugar. (Only that #property is adding some semantic with the retain, strong, etc.. keyword).
Better is to read the documentation that you can found. There is many easy to found web page where you could have more details.

Related

Objective-C Not Creating Synthesized Variables

I'm a beginning iOS developer, and still getting accustomed to this concept of synthesized variables and XCode automatically creating variables and setter/getter methods. I did quite a bit of research but was not able to find an answer that addressed what I'm facing.
I created a header class as follows:
#import "Card.h"
#interface PlayingCard : Card
#property (strong, nonatomic) NSString *suit;
#property (nonatomic) NSUInteger rank;
#end
And I have the following implementation class:
#import "PlayingCard.h"
#implementation PlayingCard
- (NSString *)contents
{
NSArray *rankStrings = #[#"?",#"A",#"2",#"3",#"4",#"5",#"6",#"7",#"8",#"9",#"J",#"Q",#"K"];
return [rankStrings[self.rank] stringByAppendingString:self.suit];
}
- (void)setSuit:(NSString *)suit
{
if([#[#"♥︎",#"♦︎",#"♠︎",#"♣︎"] containsObject:suit]) {
_suit = suit;
}
}
- (NSString *)suit
{
return _suit ? _suit : #"?";
}
#end
My error is, whenever I use the _suit variable I get an error from XCode saying:
Use of undeclared identifier '_suit'; did you mean 'suit'?
It was my understanding that _suit is generated automatically by the compiler and I should be able to access the "suit" property defined in the header file with "_suit". Is it because I'm overriding the compiler's automatically generated setter and getter methods? Changing "_suit" to "self.suit" seems to fix the problem, but I'm confused as to why it seems that my underscore synthesized variable is not being generated. Any insight to this would be greatly appreciated, thanks!
If you manually create both accessors (the setter and the getter) for an #property, the compiler assumes you don't need/want it to synthesize them -- and the corresponding instance variable -- for you. There are two possible solutions. Either declare the instance variable yourself:
#implemntation PlayingCard
{
NSString *_suit;
}
Or, my preferred approach, use an explicit #synthesize statement above your custom accessors to tell the compiler that you do still want to synthesize an instance variable for the property:
#synthesize suit = _suit;
Note that the = _suit is necessary because for legacy reasons, a simple #synthesize suit; will default to naming the ivar suit without the underscore prefix.

When should I use #synthesize explicitly?

As far as I know, since XCode 4.4 the #synthesize will auto-generate the property accessors. But just now I have read a sample of code about NSUndoManager, and in the code it noticed that the #synthesize is added explicitly. Like:
#interface RootViewController ()
#property (nonatomic, strong) NSDateFormatter *dateFormatter;
#property (nonatomic, strong) NSUndoManager *undoManager;
#end
#implementation RootViewController
//Must explicitly synthesize this
#synthesize undoManager;
I am feeling puzzled now... When should I add #synthesize explicitly to my code?
There's a lot of answers, but also a big confusion. I'll try to put some order (or increase the mess, we'll see...)
Let's stop talking about Xcode. Xcode is an IDE. clang is a compiler. This feature we are discussing is called autosynthesis of properties and it's an Objective-C language extension supported by clang, which is the default compiler used by Xcode.
Just to make it clear, if you switch to gcc in Xcode, you won't benefit from this feature (regardless from the Xcode version.) In the same way if you use a text editor and compile using clang from the command line, you will.
Thank to autosynthesis you don't need to explicitly synthesize the property as it will be automatically synthesized by the compiler as
#synthesize propertyName = _propertyName
However, a few exceptions exist:
readwrite property with custom getter and setter
when providing both a getter and setter custom implementation, the property won't be automatically synthesized
readonly property with custom getter
when providing a custom getter implementation for a readonly property, this won't be automatically synthesized
#dynamic
when using #dynamic propertyName, the property won't be automatically synthesized (pretty obvious, since #dynamic and #synthesize are mutually exclusive)
properties declared in a #protocol
when conforming to a protocol, any property the protocol defines won't be automatically synthesized
properties declared in a category
this is a case in which the #synthesize directive is not automatically inserted by the compiler, but this properties cannot be manually synthesized either. While categories can declare properties, they cannot be synthesized at all, since categories cannot create ivars. For the sake of completeness, I'll add that's it's still possible to fake the property synthesis using the Objective-C runtime.
overridden properties (new since clang-600.0.51, shipping with Xcode 6, thanks Marc Schlüpmann)
when you override a property of a superclass, you must explicitly synthesize it
It's worth noting that synthesizing a property automatically synthesize the backing ivar, so if the property synthesis is missing, the ivar will be missing too, unless explicitly declared.
Except for the last three cases, the general philosophy is that whenever you manually specify all the information about a property (by implementing all the accessor methods or using #dynamic) the compiler will assume you want full control over the property and it will disable the autosynthesis on it.
Apart from the cases that are listed above, the only other use of an explicit #synthesize would be to specify a different ivar name. However conventions are important, so my advice is to always use the default naming.
If you do not explicitly use #synthesize the compiler will understand your property the same way if you had written
#synthesize undoManager=_undoManager;
then you will be able to write in your code things like :
[_undoManager doSomething]; // iVar
[self.undoManager doSomethingElse]; // Use generated getter
This is the common convention.
if you write
#synthesize undoManager;
you will have :
[undoManager doSomething]; // iVar
[self.undoManager doSomethingElse]; // Use generated getter
Personally I stop using #synthesize, since it's not mandatory any more.
For me the only reason to use #synthesize is to link an iVar to a #property. If you want to generate specific getter and setter for it.
But in the given piece of code there is no iVar, I think that this #synthesize is useless. But now I think the new question is "When to use iVar ?", and I've no other response than "never" for this one !
When should I add #synthesize explicitly to my code?
Generally, if it's required: You will probably never hit a case where it's needed.
There's one case you might find it useful, though.
Say you're writing both a custom getter and setter, but want an instance variable to back it. (For an atomic property, this is as simple as wanting a custom setter: the compiler will write a getter if you specify a setter for a monatomic property, but not an atomic property.)
Consider this:
#interface MyObject:NSObject
#property (copy) NSString *title;
#end
#implementation MyObject
- (NSString *)title {
return _title;
}
- (void)setTitle:(NSString *)title {
_title = [title copy];
}
#end
This will not work, because _title doesn't exist. You've specified both a getter or setter, so Xcode (correctly) doesn't create a backing instance variable for it.
You have two choices for making it exist. You can either change the #implementation to this:
#implementation MyObject {
NSString *_title;
}
- (NSString *)title {
return _title;
}
- (void)setTitle:(NSString *)title {
_title = [title copy];
}
#end
Or change it to this:
#implementation MyObject
#synthesize title = _title;
- (NSString *)title {
return _title;
}
- (void)setTitle:(NSString *)title {
_title = [title copy];
}
#end
In other words, although synthesize is for practical purposes never necessary*, it can be used to define property-backing instance variables when you're providing a getter/setter. You can decide which form here you want to use.
In the past, I've favoured specifying the instance variable in the #implementation {}, but I now think the #synthesize route is a better choice as it removes the redundant type and explicitly ties the backing variable to the property:
Change the property's type, and the instance variable's type changes.
Change its storage qualifier (for instance, make it weak instead of strong or strong instead of weak) and the storage qualifier changes.
Remove or rename the property, and the #synthesize will generate a compiler error. You won't end up with stray instance variables.
*-I know one case where it was necessary, relating to splitting functionality across categories in multiple files. And I wouldn't be surprised if Apple fixes this, or even already has.
OK, when you create a property...
#property NSString *name;
Xcode will auto synthesise an iVar as if you had written...
#synthesize name = _name;
This means you can access the property with...
self.name;
// or
_name;
Either will work but only self.name actually uses the accessor methods.
There is only one time that auto synthesise does not work: If you overwrite but the setter AND the getter method then you will need to synthesise the iVar.
You are fine if you just override the setter or if you just override the getter. But if you do both then the compiler won't understand it and you will need to synthesise it manually.
As a rule of thumb though.
Don't make iVars.
Just use the property.
Don't synthesise it.
Property synthesis is required when a property is declared in a protocol. It will not be automatically synthesized in an implementing interface.
Thanks for clarifying that. I had a similar problem.
#synthesize firstAsset, secondAsset, audioAsset;
#synthesize activityView;
So now, having commented them out, I went through and replaced each occurrence with, for example
self.firstAsset It seems I could also use firstAsset, but I find I miss seeing the "" too often.
Xcode doesn't require an explicit #synthesize declaration.
If you don't write #synthesize its the same as doing :
#synthesize manager = _manager;
The sample code might've been old. They'll update it soon.
You can access your properties like :
[self.manager function];
This is Apple's recommended convention. I follow it, and I recommend that you do too!

Objective-C : Need advice on setting instance variables in init method

I am using ARC.
This is my .h file
...
- (id)initWithCoordinate:(CLLocationCoordinate2D)c title:(NSString *)t;
#property (nonatomic, readonly) CLLocationCoordinate2D coordinate;
#property (nonatomic, copy) NSString *title;
...
This is my .m file
....
#synthesize coordinate, title;
- (id)initWithCoordinate:(CLLocationCoordinate2D)c title:(NSString *)t
{
self = [super init];
if (self) {
coordinate = c;
[self setTitle:t];
}
return self;
}
....
Is setting coordinate this way, the right way to do it? Given that I declare it as readonly, it seems like it is the only way to do it. What if I just use the default (i.e. readwrite), in this case, should I use the setter method [self setCoordinate] instead?
I could set the title by doing title = t as well. Compare to using the setter method, the result is the same, but what is the difference ?
Thanks! Wish I could accept all of your answers.
You're actually supposed to set ivars directly in an initializer method all the time. This is true whether or not you have a readonly or readwrite property. The documentation here even says so.
The reasoning behind this has to do with inheritance. If someone were to subclass your class and overwrite the setters for your properties such that they bypass the ivars you created (or do some other wacky thing), then suddenly your original implementation of your initializer method now no longer does what it is written to do. In particular, your initializer could end up creating an object with a weird state due to the subclass overriding your accessors. In the pre-ARC days, you could also end up with tricky (or just straight-up broken) memory situations when this sort of thing happens. The take-away message is: you should write initializers so that they will always create an object with a known valid state.
So (assuming you're using ARC) your initializer should actually be:
- (id)initWithCoordinate:(CLLocationCoordinate2D)c title:(NSString *)t
{
self = [super init];
if (self) {
coordinate = c;
title = [t copy];
}
return self;
}
Personally, I prefer to synthesize ivars with a starting underscore to clarify when I'm using the property and when I'm accessing the ivar directly (LLVM 4.0 now does this to automatically synthesized properties as well).
#synthesize coordinate = _coordinate;
#synthesize title = _title;
- (id)initWithCoordinate:(CLLocationCoordinate2D)c title:(NSString *)t
{
self = [super init];
if (self) {
_coordinate = c;
_title = [t copy];
}
return self;
}
1: As your code is now, yes, that is the right way to do it. If you weren't using ARC (assuming you are currently), you'd also want to retain the value to assert ownership. This will be done automatically under ARC. Keep in mind that that is not the only way of doing it; you could redeclare the property as readwrite in the class extension in the implementation file. This is a common practice which allows you to have the benefits of a readwrite property while having the property still be readonly to users of the class. Ex.
//MyClass.h
#interface MyClass : NSObject
#property (nonatomic, strong, readonly) NSNumber* number;
- (void) initWithNumber:(NSNumber*)number;
#end
//MyClass.m
#interface MyClass ()
#property (nonatomic, strong, readwrite) NSNumber* number;
#end
#implementation MyClass
//this changes the instance variable backing the property to _number.
#synthesize number = _number;
- (void) initWithNumber:(NSNumber*)number{
self = [super init];
if (self) {
self.number = number;
}
return self;
}
#end
At the end of the day, I'd say it's a good habit to use setters whenever you can to keep things KVO compliant and so that you always know when values change. For instance, if you have a custom UIView with a property that is reflected in its appearance, chances are you'd want to redisplay yourself when it changes. The easiest way to do this is to implement the setter yourself and call setNeedsDisplay after setting the value. You couldn't do that if you set the instance value backing the property directly; the user of the class would have to remember to call setneedsDisplay every time they set it, manually.
2: One goes through the setter method, giving you a way to know when a value is going to be set, while one sets a value to the instance variable backing the property. The setter method will always handle memory management in the way it was told to, while it's up to you to do things such as copying values for a copy setter if you assign directly to an instance variable, so that you maintain some consistent scheme. Going through setters sometimes, and not others can lead to some nasty bugs if you don't be careful. Never going through setters makes it hard to know when values change, making it near impossible to weed out invalid values. For instance, if you had an int property you wanted to limit to values in some range and someone passed in a value under the minimum limit, you'd probably want to set the property to the lowest possible value in the range. You can't do that without the value going through the setter first.
Yes, it is fine to set it like that. If you prefer to use a property all the time you can override the property to be read/write rather than read-only in a class extension. In Foo.m:
#interface Foo ()
#property (nonatomic) CLLocationCoordinate2D coordinate;
#end
#implementation Foo {
// ...
self.coordinate = c;
}
Setting the coordinate that way is correct, and is the only way to do it if you have declared the property readonly.
Setting the title using title = t is different than setting the title using [self setTitle:t]. If you directly assign to the instance variable, you will just retain the NSString instance that was passed as argument t. But if you using the accessor method, the accessor will ask the string to copy itself (because you declared the property copy). If the string you were given as argument t is actually an NSMutableString, then you will get an immutable copy of it. If the string you were given as argument t is already an immutable string, it will just return itself when asked for a copy.
self.coordinate = c;
is essentially compiled to be the same as calling
[self setCoordinate:c];
The difference between coordinate = c and [self setCoordinate:c]; is that the first is just setting a variable directly where as the second is calling a method.
The reason to be wary is that methods could potentially have side effects depending on how the implementation is written e.g. (stupid example)
- (void)setCoordinate:(CLLocationCoordinate2D)coordinate;
{
_coordinate = coordinate;
[self doSomethingCrazy];
}

Objective-C setter/getter naming conventions drive me mad?

I have been trying to understand something for several hours and I would like to get your point of view.
I have setter/getter on one of my class properties (I noticed that I MUST add "set" in front of the setter name else the compiler says that there is no setter):
#property (nonatomic, retain, readwrite, setter=setTopString:, getter=TopString) NSString* m_topString;
When I call the setter like this, the compiler is happy:
[secureKeyboardController setTopString:#"This action requires that your enter your authentication code."];
But when I try to use the "dot" convention, then I am rejected by the compiler:
secureKeyboardController.topString = #"This action requires that your enter your authentication code.";
What is really weird is that the dot naming convention works fine with this property:
#property (nonatomic, readwrite, getter=PINMaxLength, setter=setPINMaxLength:) NSInteger m_PINMaxLength;
In this case i can do:
[secureKeyboardController setPINMaxLength:10];enter code here
or
secureKeyboardController.PINMaxLength = 10;
In both cases, the compiler is happy.
I really would like to fall asleep tonigh less stupid than I currently feel now. Thus any explanation would be greatly appreciated.
Regards,
Apple92
What you're doing is declaring properties as if you were declaring instance variables. You should not be using the names in the getter and setter attributes on the #property declaration with dot syntax; that it happens to be working now is not - so far as I know - by design.
The property should be what you use with dot syntax. For some reason - unfamiliarity with Cocoa coding conventions, I expect - you named your properties m_topString and m_PINMaxLength. That means you should use them as someObject.m_topString and someObject.m_PINMaxLength.
If you want to use those names for the instance variables that you've decided to use for the properties' backing storage, you should declare that in the #synthesize directive instead.
This is how your class should look, to be more in line with regular Cocoa and Objective-C coding conventions:
#interface SomeClass : NSObject {
#private
NSString *m_topString;
}
#property (nonatomic, readwrite, copy) NSString *topString;
- (id)initWithTopString:(NSString *)initialTopString;
#end
#implementation SomeClass
#synthesize topString = m_topString;
// this says to use the instance variable m_topString
// for the property topString's storage
- (id)initWithTopString:(NSString *)initialTopString {
if ((self = [super init])) {
m_topString = [initialTopString copy];
// use the ivar directly in -init, not the property
}
return self;
}
- (void)dealloc {
[m_topString release];
// use the ivar directly in -dealloc, not the property
[super dealloc];
}
- (NSString *)description {
return [NSString stringWithFormat:#"SomeClass (%#)", self.topString];
// elsewhere in your class, use the property
// this will call through its getter and setter methods
}
#end
You are trying to fight the compiler, and the compiler fights back.
You are trying to declare a property named m_topString with setter setTopString and getter TopString, and that is plainly stupid. You are writing Objective-C code, not C++. Your code will be a maintenance nightmare (unless the next maintainer is just sensible and changes your code to Objective-C conventions).
Do yourself a favour, start writing Objective-C code. Just call the property topString, don't pick your own names for the setter and getter, don't pick your own names for the instance variable, and everything works just fine.
Capitalize the T in TopString, i.e. secureKeyboardController.TopString
I'm 90% sure that will fix your problem.

How to provide additional custom implementation of accessor methods when using #synthesize?

I want to fire some code when a property is accessed and changed. I use #property and #synthesize in my code for my ivars. The properties are retained, so I'd like to keep that memory management stuff automatically generated by #synthesize.
However, I assume that #synthesize tells the compiler to generate the accessor methods code right where #synthesize is, so most of the cases at the top of the code, right?
And when I have a property foo, I get -setFoo and -foo methods. Could I then just make a method like this, to execute some more custom code when a property is changed?
-(void)setFoo {
// custom stuff
}
Now that's a problem. How to execute the first one? I wouldn't love to have a different name here. Is there maybe a way to let the #synthesize directive create other names for getter and setter methods, which I then call easily? And I would still be able to use the dot syntax then to access them?
You can use #property and #synthesize just like you normally would, but provide a custom setter or getter (or both) and those will be used instead. Typically I will do something like this:
// Override the setter
- (void)setName:(NSString *)aName
{
if (name == aName)
return;
[name release];
name = [aName retain];
//custom code here
}
When I use the set property, it will invoke my custom method. However, the get will still be synthesized.
If you provide an implemnetation for the setters or getters it will use that instead of the generated implementation. Its not hard to implement the "retaining" aspect of the getters and setters that are generated for you by the compiler when u synthesize, so you can just write your own getters and setters i would say and go with that.
One wacky solution is to create an abstract super class that does gives you the normal property synthesis.
Then create a concrete subclass that you will actually use, and that simply implements and override method (same signature) and calls super to do the actual setting.
This allows you to do whatever you want to do before or after the call to super's implementation.
Example:
#interface ALTOClassA : NSObject
#property NSString *catName;
#end
Nothing else needed in the .m beyond the stubbed file for this test.
Create the subclass, nothing needed specially in the #interface
#import "ALTOClassA.h"
#interface ALTOClassAJunior : ALTOClassA
#end
In the #implementation we do our override.
#import "ALTOClassAJunior.h"
#implementation ALTOClassAJunior
- (void)setCatName:(NSString*)aCatName {
NSLog(#"%#",NSStringFromSelector(_cmd));
[super setCatName:aCatName];
NSLog(#"after super: self.catName %#", self.catName);
}
#end
In use:
ALTOClassAJunior *aCAJ = [ALTOClassAJunior new];
NSLog(#"aCAS.catName %#", aCAJ.catName);
NSLog(#"set it to George.");
[aCAJ setCatName:#"George"];
NSLog(#"aCAS.catName %#", aCAJ.catName);
This allows you to leverage the autogenerated code, and still do stuff you want to do with your class. Abstract Super Class is often a useful solution for many things.
Yes, in your #property declaration, you can specify the getter and setter methods.
#property (readwrite,getter=privateGetFoo,setter=privateSetFoo:) NSObject * foo;
In your foo and setFoo: methods, call [self privateGetFoo] or [self privateSetFoo:f] then your custom code.
The object can also set an observer on itself with addObserver:forKeyPath:options:context:.
That said, I don't think either of these are very clean ways to do things. Better to write your own getter/setter as others have suggested.