The following program calculates and removes the remainder of a number, adds the total of the remainders calculated and displays them.
#import <Foundation/Foundation.h>
int main (int argc, char * argv[]) {
#autoreleasepool {
int number, remainder, total;
NSLog(#"Enter your number");
scanf("%i", &number);
while (number != 0)
{
remainder = number % 10;
total += remainder;
number /= 10;
}
NSLog(#"%i", total);
}
return 0;
}
My questions are:
Why is the program set to continue as long as the number is not equal to 0? Shouldn't it continue as the long as the remainder is not equal to 0?
At what point is the remainder discarded from the value of number? Why is there no number -= remainder statement before n /=10?
[Bonus question: Does Objective-C get any easier to understand?]
The reason we continue until number != 0 instead of using remainder is that if our input is divisible by 10 exactly, then we don't get the proper output (the sum of the base 10 digits).
The remainder is dropped off because of integer division. Remember, an integer cannot hold a decimal place, so when we divide 16 by 10, we don't get 1.6, we just get 1.
And yes, Objective-C does get easier over time (but, as a side-note, this uses absolutely 0 features of Objective-C, so it's basically C with a NSLog call).
Note that the output isn't quite what you would expect at all times, however, as in C / ObjC, a (unlike languages like D or JS) a variable is not always initialized to a set value (in this case, you assume 0). This could cause UB down the road.
It checks to see if number is not equal to zero because remainder very well may never become zero. If we were to input 5 as our input value, the first time through the loop remainder would be set to 5 (because 5 % 10 = 5), and number would go to zero because
5 / 10 = 0.5, and ints do not store floating point values, so the .5 will get truncated and the value of number will equal zero.
The remainder does not get removed from the value of number in this code. I think that you may be confused about what the modulo operator does (see this explanation).
Bonus answer: learning a programming language is difficult at first, but very rewarding in the long run (if you stick with it). Each new language that you learn after your first will most likely be easier to learn too, because you will understand general programming constructs and practices. The best of luck on your endeavor!
Related
I have a simple problem, but because this "programming language" I am using is 32-bit and only supports basic functions such as addition, subtraction, multiplication, division, and concatenation (literally that's it), I am having some trouble.
For the input, I have a 16 digit number like so: 3334,5678,9523,4567
I want to then subtract 2 other random 16 digit numbers from this number and check if the first and last digits are 1.
For example, if the two other numbers are 1111,1111,1111,1111 and 1234,5678,9123,4565.
My final number would be: 0988,8888,9288,8891.
Here, the last number is 1, but the first number is 0, so the test would fail.
The issue is with 32-bit systems, there are massive errors due to not enough precision provided by the bits. What are some ways to bypass this issue?
If you're using a language like C or Java you should be able to use a long to create a 64 bit integer. If that's not possible you could divide the numbers into two 32 bit numbers, one to hold the upper half and one to hold the lower half.
Something like this:
//Each half is 8 digits to represent 8 of the 16
//Because of this each half should be less than 100000000
int upperHalf = 33345678;
int lowerHalf = 95234567;
//randomInt represents a function to generate a random
//integer equal to or greater than 0 and less than the
//argument passed to it
int randUpperHalf = randomInt(100000000);
int randLowerHalf = randomInt(100000000);
int lowerHalf = lowerHalf - randLowerHalf;
//If lowerHalf was a negative number you need to borrow from the upperHalf
if (lowerHalf < 0) {
upperHalf = upperHalf - 1;
lowerHalf = lowerHalf + 100000000;
}
upperHalf = upperHalf - randUpperHalf;
//Check that the first and last digits are 1
if ((upperHalf / 100000000) == 1 && (lowerHalf % 10) == 1) {
//The first and last digits are 1
}
Edit: Comments have been added to explain the code better. (lowerHalf % 2) == 1 has been changed to (lowerHalf % 10) == 1 and should now be able to tell if the number ends in a 1.
I have recently sat a computing exam in university in which we were never taught beforehand about the modulus function or any other check for odd/even function and we have no access to external documentation except our previous lecture notes. Is it possible to do this without these and how?
Bitwise AND (&)
Extract the last bit of the number using the bitwise AND operator. If the last bit is 1, then it's odd, else it's even. This is the simplest and most efficient way of testing it. Examples in some languages:
C / C++ / C#
bool is_even(int value) {
return (value & 1) == 0;
}
Java
public static boolean is_even(int value) {
return (value & 1) == 0;
}
Python
def is_even(value):
return (value & 1) == 0
I assume this is only for integer numbers as the concept of odd/even eludes me for floating point values.
For these integer numbers, the check of the Least Significant Bit (LSB) as proposed by Rotem is the most straightforward method, but there are many other ways to accomplish that.
For example, you could use the integer division operation as a test. This is one of the most basic operation which is implemented in virtually every platform. The result of an integer division is always another integer. For example:
>> x = int64( 13 ) ;
>> x / 2
ans =
7
Here I cast the value 13 as a int64 to make sure MATLAB treats the number as an integer instead of double data type.
Also here the result is actually rounded towards infinity to the next integral value. This is MATLAB specific implementation, other platform might round down but it does not matter for us as the only behavior we look for is the rounding, whichever way it goes. The rounding allow us to define the following behavior:
If a number is even: Dividing it by 2 will produce an exact result, such that if we multiply this result by 2, we obtain the original number.
If a number is odd: Dividing it by 2 will result in a rounded result, such that multiplying it by 2 will yield a different number than the original input.
Now you have the logic worked out, the code is pretty straightforward:
%% sample input
x = int64(42) ;
y = int64(43) ;
%% define the checking function
% uses only multiplication and division operator, no high level function
is_even = #(x) int64(x) == (int64(x)/2)*2 ;
And obvisouly, this will yield:
>> is_even(x)
ans =
1
>> is_even(y)
ans =
0
I found out from a fellow student how to solve this simplistically with maths instead of functions.
Using (-1)^n :
If n is odd then the outcome is -1
If n is even then the outcome is 1
This is some pretty out-of-the-box thinking, but it would be the only way to solve this without previous knowledge of complex functions including mod.
I am learning Objective-C and have completed a simple program and got an unexpected result. This program is just a multiplication table test... User inputs the number of iterations(test questions), then inputs answers. That after program displays the number of right and wrong answers, percentage and accepted/failed result.
#import <Foundation/Foundation.h>
int main (int argc, const char * argv[])
{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSLog(#"Welcome to multiplication table test");
int rightAnswers; //the sum of the right answers
int wrongAnswers; //the sum of wrong answers
int combinations; //the number of combinations#
NSLog(#"Please, input the number of test combinations");
scanf("%d",&combinations);
for(int i=0; i<combinations; ++i)
{
int firstInt=rand()%8+1;
int secondInt=rand()%8+1;
int result=firstInt*secondInt;
int answer;
NSLog(#"%d*%d=",firstInt,secondInt);
scanf("%d",&answer);
if(answer==result)
{
NSLog(#"Ok");
rightAnswers++;
}
else
{
NSLog(#"Error");
wrongAnswers++;
}
}
int percent=(100/combinations)*rightAnswers;
NSLog(#"Combinations passed: %d",combinations);
NSLog(#"Answered right: %d times",rightAnswers);
NSLog(#"Answered wrong: %d times",wrongAnswers);
NSLog(#"Completed %d percent",percent);
if(percent>=70)NSLog(#"accepted");
else
NSLog(#"failed");
[pool drain];
return 0;
}
Problem (strange result)
When I input 3 iterations and answer 'em right, i am not getting of 100% right. Getting only
99%. The same count I tried on my iPhone calculator.
100 / 3 = 33.3333333... percentage for one right answer (program displays 33%. The digits after mantissa getting cut off)
33.3333333... * 3=100%
Can someone explain me where I went wrong? Thanx.
This is a result of integer division. When you perform division between two integer types, the result is automatically rounded towards 0 to form an integer. So, integer division of (100 / 3) gives a result of 33, not 33.33.... When you multiply that by 3, you get 99. To fix this, you can force floating point division by changing 100 to 100.0. The .0 tells the compiler that it should use a floating point type instead of an integer, forcing floating point division. As a result, rounding will not occur after the division. However, 33.33... cannot be represented exactly by binary numbers. Because of this, you may still see incorrect results at times. Since you store the result as an integer, rounding down will still occur after the multiplication, which will make it more obvious. If you want to use an integer type, you should use the round function on the result:
int percent = round((100.0 / combinations) * rightAnswers);
This will cause the number to be rounded to the closest integer before converting it to an integer type. Alternately, you could use a floating point storage type and specify a certain number of decimal places to display:
float percent = (100.0 / combinations) * rightAnswers;
NSLog(#"Completed %.1f percent",percent); // Display result with 1 decimal place
Finally, since floating point math will still cause rounding for numbers that can't be represented in binary, I would suggest multiplying by rightAnswers before dividing by combinations. This will increase the chances that the result is representable. For example, 100/3=33.33... is not representable and will be rounded. If you multiply by 3 first, you get 300/3=100, which is representable and will not be rounded.
Ints are integers. They can't represent an arbitrary real number like 1/3. Even floating-point numbers, which can represent reals, won't have enough precision to represent an infinitely repeating decimal like 100/3. You'll either need to use an arbitrary-precision library, use a library that includes rationals as a data type, or just store as much precision as you need and round from there (e.g. make your integer unit hundredths-of-a-percent instead of a single percentage point).
You might want to implement some sort of rounding because 33.333....*3 = 99.99999%. 3/10 is an infinite decimal therefore you need some sort of rounding to occur (maybe at the 3rd decimal place) so that the answer comes out correct. I would say if (num*1000 % 10 >= 5) num += .01 or something along those lines multiply by 100 moves decimal 3 times and then mod returns the 3rd digit (could be zero). You also might only want to round at the end once you sum everything up to avoid errors.
EDIT: Didn't realize you were using integers numbers at the end threw me off, you might want to use double or float (floats are slightly inaccurate past 2 or 3 digits which is OK with what you want).
100/3 is 33. Integer mathematics here.
I know the modulus (%) operator calculates the remainder of a division. How can I identify a situation where I would need to use the modulus operator?
I know I can use the modulus operator to see whether a number is even or odd and prime or composite, but that's about it. I don't often think in terms of remainders. I'm sure the modulus operator is useful, and I would like to learn to take advantage of it.
I just have problems identifying where the modulus operator is applicable. In various programming situations, it is difficult for me to see a problem and realize "Hey! The remainder of division would work here!".
Imagine that you have an elapsed time in seconds and you want to convert this to hours, minutes, and seconds:
h = s / 3600;
m = (s / 60) % 60;
s = s % 60;
0 % 3 = 0;
1 % 3 = 1;
2 % 3 = 2;
3 % 3 = 0;
Did you see what it did? At the last step it went back to zero. This could be used in situations like:
To check if N is divisible by M (for example, odd or even)
or
N is a multiple of M.
To put a cap of a particular value. In this case 3.
To get the last M digits of a number -> N % (10^M).
I use it for progress bars and the like that mark progress through a big loop. The progress is only reported every nth time through the loop, or when count%n == 0.
I've used it when restricting a number to a certain multiple:
temp = x - (x % 10); //Restrict x to being a multiple of 10
Wrapping values (like a clock).
Provide finite fields to symmetric key algorithms.
Bitwise operations.
And so on.
One use case I saw recently was when you need to reverse a number. So that 123456 becomes 654321 for example.
int number = 123456;
int reversed = 0;
while ( number > 0 ) {
# The modulus here retrieves the last digit in the specified number
# In the first iteration of this loop it's going to be 6, then 5, ...
# We are multiplying reversed by 10 first, to move the number one decimal place to the left.
# For example, if we are at the second iteration of this loop,
# reversed gonna be 6, so 6 * 10 + 12345 % 10 => 60 + 5
reversed = reversed * 10 + number % 10;
number = number / 10;
}
Example. You have message of X bytes, but in your protocol maximum size is Y and Y < X. Try to write small app that splits message into packets and you will run into mod :)
There are many instances where it is useful.
If you need to restrict a number to be within a certain range you can use mod. For example, to generate a random number between 0 and 99 you might say:
num = MyRandFunction() % 100;
Any time you have division and want to express the remainder other than in decimal, the mod operator is appropriate. Things that come to mind are generally when you want to do something human-readable with the remainder. Listing how many items you could put into buckets and saying "5 left over" is good.
Also, if you're ever in a situation where you may be accruing rounding errors, modulo division is good. If you're dividing by 3 quite often, for example, you don't want to be passing .33333 around as the remainder. Passing the remainder and divisor (i.e. the fraction) is appropriate.
As #jweyrich says, wrapping values. I've found mod very handy when I have a finite list and I want to iterate over it in a loop - like a fixed list of colors for some UI elements, like chart series, where I want all the series to be different, to the extent possible, but when I've run out of colors, just to start over at the beginning. This can also be used with, say, patterns, so that the second time red comes around, it's dashed; the third time, dotted, etc. - but mod is just used to get red, green, blue, red, green, blue, forever.
Calculation of prime numbers
The modulo can be useful to convert and split total minutes to "hours and minutes":
hours = minutes / 60
minutes_left = minutes % 60
In the hours bit we need to strip the decimal portion and that will depend on the language you are using.
We can then rearrange the output accordingly.
Converting linear data structure to matrix structure:
where a is index of linear data, and b is number of items per row:
row = a/b
column = a mod b
Note above is simplified logic: a must be offset -1 before dividing & the result must be normalized +1.
Example: (3 rows of 4)
1 2 3 4
5 6 7 8
9 10 11 12
(7 - 1)/4 + 1 = 2
7 is in row 2
(7 - 1) mod 4 + 1 = 3
7 is in column 3
Another common use of modulus: hashing a number by place. Suppose you wanted to store year & month in a six digit number 195810. month = 195810 mod 100 all digits 3rd from right are divisible by 100 so the remainder is the 2 rightmost digits in this case the month is 10. To extract the year 195810 / 100 yields 1958.
Modulus is also very useful if for some crazy reason you need to do integer division and get a decimal out, and you can't convert the integer into a number that supports decimal division, or if you need to return a fraction instead of a decimal.
I'll be using % as the modulus operator
For example
2/4 = 0
where doing this
2/4 = 0 and 2 % 4 = 2
So you can be really crazy and let's say that you want to allow the user to input a numerator and a divisor, and then show them the result as a whole number, and then a fractional number.
whole Number = numerator/divisor
fractionNumerator = numerator % divisor
fractionDenominator = divisor
Another case where modulus division is useful is if you are increasing or decreasing a number and you want to contain the number to a certain range of number, but when you get to the top or bottom you don't want to just stop. You want to loop up to the bottom or top of the list respectively.
Imagine a function where you are looping through an array.
Function increase Or Decrease(variable As Integer) As Void
n = (n + variable) % (listString.maxIndex + 1)
Print listString[n]
End Function
The reason that it is n = (n + variable) % (listString.maxIndex + 1) is to allow for the max index to be accounted.
Those are just a few of the things that I have had to use modulus for in my programming of not just desktop applications, but in robotics and simulation environments.
Computing the greatest common divisor
Determining if a number is a palindrome
Determining if a number consists of only ...
Determining how many ... a number consists of...
My favorite use is for iteration.
Say you have a counter you are incrementing and want to then grab from a known list a corresponding items, but you only have n items to choose from and you want to repeat a cycle.
var indexFromB = (counter-1)%n+1;
Results (counter=indexFromB) given n=3:
`1=1`
`2=2`
`3=3`
`4=1`
`5=2`
`6=3`
...
Best use of modulus operator I have seen so for is to check if the Array we have is a rotated version of original array.
A = [1,2,3,4,5,6]
B = [5,6,1,2,3,4]
Now how to check if B is rotated version of A ?
Step 1: If A's length is not same as B's length then for sure its not a rotated version.
Step 2: Check the index of first element of A in B. Here first element of A is 1. And its index in B is 2(assuming your programming language has zero based index).
lets store that index in variable "Key"
Step 3: Now how to check that if B is rotated version of A how ??
This is where modulus function rocks :
for (int i = 0; i< A.length; i++)
{
// here modulus function would check the proper order. Key here is 2 which we recieved from Step 2
int j = [Key+i]%A.length;
if (A[i] != B[j])
{
return false;
}
}
return true;
It's an easy way to tell if a number is even or odd. Just do # mod 2, if it is 0 it is even, 1 it is odd.
Often, in a loop, you want to do something every k'th iteration, where k is 0 < k < n, assuming 0 is the start index and n is the length of the loop.
So, you'd do something like:
int k = 5;
int n = 50;
for(int i = 0;i < n;++i)
{
if(i % k == 0) // true at 0, 5, 10, 15..
{
// do something
}
}
Or, you want to keep something whitin a certain bound. Remember, when you take an arbitrary number mod something, it must produce a value between 0 and that number - 1.
int x = n / 3; // <-- make this faster
// for instance
int a = n * 3; // <-- normal integer multiplication
int b = (n << 1) + n; // <-- potentially faster multiplication
The guy who said "leave it to the compiler" was right, but I don't have the "reputation" to mod him up or comment. I asked gcc to compile int test(int a) { return a / 3; } for an ix86 and then disassembled the output. Just for academic interest, what it's doing is roughly multiplying by 0x55555556 and then taking the top 32 bits of the 64 bit result of that. You can demonstrate this to yourself with eg:
$ ruby -e 'puts(60000 * 0x55555556 >> 32)'
20000
$ ruby -e 'puts(72 * 0x55555556 >> 32)'
24
$
The wikipedia page on Montgomery division is hard to read but fortunately the compiler guys have done it so you don't have to.
This is the fastest as the compiler will optimize it if it can depending on the output processor.
int a;
int b;
a = some value;
b = a / 3;
There is a faster way to do it if you know the ranges of the values, for example, if you are dividing a signed integer by 3 and you know the range of the value to be divided is 0 to 768, then you can multiply it by a factor and shift it to the left by a power of 2 to that factor divided by 3.
eg.
Range 0 -> 768
you could use shifting of 10 bits, which multiplying by 1024, you want to divide by 3 so your multiplier should be 1024 / 3 = 341,
so you can now use (x * 341) >> 10
(Make sure the shift is a signed shift if using signed integers), also make sure the shift is an actually shift and not a bit ROLL
This will effectively divide the value 3, and will run at about 1.6 times the speed as a natural divide by 3 on a standard x86 / x64 CPU.
Of course the only reason you can make this optimization when the compiler cant is because the compiler does not know the maximum range of X and therefore cannot make this determination, but you as the programmer can.
Sometime it may even be more beneficial to move the value into a larger value and then do the same thing, ie. if you have an int of full range you could make it an 64-bit value and then do the multiply and shift instead of dividing by 3.
I had to do this recently to speed up image processing, i needed to find the average of 3 color channels, each color channel with a byte range (0 - 255). red green and blue.
At first i just simply used:
avg = (r + g + b) / 3;
(So r + g + b has a maximum of 768 and a minimum of 0, because each channel is a byte 0 - 255)
After millions of iterations the entire operation took 36 milliseconds.
I changed the line to:
avg = (r + g + b) * 341 >> 10;
And that took it down to 22 milliseconds, its amazing what can be done with a little ingenuity.
This speed up occurred in C# even though I had optimisations turned on and was running the program natively without debugging info and not through the IDE.
See How To Divide By 3 for an extended discussion of more efficiently dividing by 3, focused on doing FPGA arithmetic operations.
Also relevant:
Optimizing integer divisions with Multiply Shift in C#
Depending on your platform and depending on your C compiler, a native solution like just using
y = x / 3
Can be fast or it can be awfully slow (even if division is done entirely in hardware, if it is done using a DIV instruction, this instruction is about 3 to 4 times slower than a multiplication on modern CPUs). Very good C compilers with optimization flags turned on may optimize this operation, but if you want to be sure, you are better off optimizing it yourself.
For optimization it is important to have integer numbers of a known size. In C int has no known size (it can vary by platform and compiler!), so you are better using C99 fixed-size integers. The code below assumes that you want to divide an unsigned 32-bit integer by three and that you C compiler knows about 64 bit integer numbers (NOTE: Even on a 32 bit CPU architecture most C compilers can handle 64 bit integers just fine):
static inline uint32_t divby3 (
uint32_t divideMe
) {
return (uint32_t)(((uint64_t)0xAAAAAAABULL * divideMe) >> 33);
}
As crazy as this might sound, but the method above indeed does divide by 3. All it needs for doing so is a single 64 bit multiplication and a shift (like I said, multiplications might be 3 to 4 times faster than divisions on your CPU). In a 64 bit application this code will be a lot faster than in a 32 bit application (in a 32 bit application multiplying two 64 bit numbers take 3 multiplications and 3 additions on 32 bit values) - however, it might be still faster than a division on a 32 bit machine.
On the other hand, if your compiler is a very good one and knows the trick how to optimize integer division by a constant (latest GCC does, I just checked), it will generate the code above anyway (GCC will create exactly this code for "/3" if you enable at least optimization level 1). For other compilers... you cannot rely or expect that it will use tricks like that, even though this method is very well documented and mentioned everywhere on the Internet.
Problem is that it only works for constant numbers, not for variable ones. You always need to know the magic number (here 0xAAAAAAAB) and the correct operations after the multiplication (shifts and/or additions in most cases) and both is different depending on the number you want to divide by and both take too much CPU time to calculate them on the fly (that would be slower than hardware division). However, it's easy for a compiler to calculate these during compile time (where one second more or less compile time plays hardly a role).
For 64 bit numbers:
uint64_t divBy3(uint64_t x)
{
return x*12297829382473034411ULL;
}
However this isn't the truncating integer division you might expect.
It works correctly if the number is already divisible by 3, but it returns a huge number if it isn't.
For example if you run it on for example 11, it returns 6148914691236517209. This looks like a garbage but it's in fact the correct answer: multiply it by 3 and you get back the 11!
If you are looking for the truncating division, then just use the / operator. I highly doubt you can get much faster than that.
Theory:
64 bit unsigned arithmetic is a modulo 2^64 arithmetic.
This means for each integer which is coprime with the 2^64 modulus (essentially all odd numbers) there exists a multiplicative inverse which you can use to multiply with instead of division. This magic number can be obtained by solving the 3*x + 2^64*y = 1 equation using the Extended Euclidean Algorithm.
What if you really don't want to multiply or divide? Here is is an approximation I just invented. It works because (x/3) = (x/4) + (x/12). But since (x/12) = (x/4) / 3 we just have to repeat the process until its good enough.
#include <stdio.h>
void main()
{
int n = 1000;
int a,b;
a = n >> 2;
b = (a >> 2);
a += b;
b = (b >> 2);
a += b;
b = (b >> 2);
a += b;
b = (b >> 2);
a += b;
printf("a=%d\n", a);
}
The result is 330. It could be made more accurate using b = ((b+2)>>2); to account for rounding.
If you are allowed to multiply, just pick a suitable approximation for (1/3), with a power-of-2 divisor. For example, n * (1/3) ~= n * 43 / 128 = (n * 43) >> 7.
This technique is most useful in Indiana.
I don't know if it's faster but if you want to use a bitwise operator to perform binary division you can use the shift and subtract method described at this page:
Set quotient to 0
Align leftmost digits in dividend and divisor
Repeat:
If that portion of the dividend above the divisor is greater than or equal to the divisor:
Then subtract divisor from that portion of the dividend and
Concatentate 1 to the right hand end of the quotient
Else concatentate 0 to the right hand end of the quotient
Shift the divisor one place right
Until dividend is less than the divisor:
quotient is correct, dividend is remainder
STOP
For really large integer division (e.g. numbers bigger than 64bit) you can represent your number as an int[] and perform division quite fast by taking two digits at a time and divide them by 3. The remainder will be part of the next two digits and so forth.
eg. 11004 / 3 you say
11/3 = 3, remaineder = 2 (from 11-3*3)
20/3 = 6, remainder = 2 (from 20-6*3)
20/3 = 6, remainder = 2 (from 20-6*3)
24/3 = 8, remainder = 0
hence the result 3668
internal static List<int> Div3(int[] a)
{
int remainder = 0;
var res = new List<int>();
for (int i = 0; i < a.Length; i++)
{
var val = remainder + a[i];
var div = val/3;
remainder = 10*(val%3);
if (div > 9)
{
res.Add(div/10);
res.Add(div%10);
}
else
res.Add(div);
}
if (res[0] == 0) res.RemoveAt(0);
return res;
}
If you really want to see this article on integer division, but it only has academic merit ... it would be an interesting application that actually needed to perform that benefited from that kind of trick.
Easy computation ... at most n iterations where n is your number of bits:
uint8_t divideby3(uint8_t x)
{
uint8_t answer =0;
do
{
x>>=1;
answer+=x;
x=-x;
}while(x);
return answer;
}
A lookup table approach would also be faster in some architectures.
uint8_t DivBy3LU(uint8_t u8Operand)
{
uint8_t ai8Div3 = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, ....];
return ai8Div3[u8Operand];
}