Source implementation available for FxCop rule CA2241 (Provide correct arguments to formatting methods)? - fxcop

I'm attempting to implement my own version of CA2241 using the VisitMethodCall override.
It works if the number of arguments to String.Format are 5 or fewer, but always shows only 2 arguments if there are 6 or more arguments (including the format string).
For example (MethodCall)call.Operands.Count is correct in these cases:
Console.WriteLine( String.Format( "{0} {1}", 1, 2 ) );
Console.WriteLine( String.Format( "{0} {1} {2}", 1, 2, 3 ) );
...but always returns only '2' in this case:
Console.WriteLine( String.Format( "{0} {1} {2} {3}", 1, 2, 3, 4 ) );
Console.WriteLine( String.Format( "{0} {1} {2} {3} {4}", 1, 2, 3, 4, 5 ) );
Here is my abbreviated current override for VisitMethodCall. When expression.NodeType is not Literal, or Call it is always Pop with only two parameters. And this situation only occurs when the number of arguments to String.Format is 6 or more.
public override void VisitMethodCall( MethodCall call )
{
MemberBinding mb = call.Callee as MemberBinding;
if ( mb.BoundMember.FullName.StartsWith( "System.String.Format(" ) )
{
Expression expression = call.Operands[ 0 ];
switch ( expression.NodeType )
{
case NodeType.Literal:
// ...
break;
case NodeType.Call:
// ...
break;
default: // always NodeType.Pop with two parameters
// ...
break;
}
}
base.VisitMethodCall( call );
}
So, what am I doing wrong? Also, is source available for the CA2241 rule?
Thanks in advance.
EDIT: I've discovered this article: http://blogs.msdn.com/b/codeanalysis/archive/2010/04/14/data-flow-analysis-rules-in-visual-studio-2010.aspx which explains that CC2241 has been reimplemented using the new Data Flow Analysis engine (Pheonix), and sure enough I was able to find the method with dotPeek. Unfortunately, there's no documentation for the new DFA engine that I can find.

The reason that you're only seeing two operands once you get past 3 substitute values is that the target is invoking the Format(string format, params object[] args) overload of String.Format. If you want to know how many substitute values are being passed, you will need to examine the size of the args parameter array.
There is no source code available for the Microsoft-provided FxCop rules, and there is no rule SDK available. If you want to learn about how they are built, you'll need to use a decompiler (like pretty much every single other person who writes custom rules).

Related

Swift 5.7 RegexBuilder: Nested TryCapture - transform / Mapping Output?

Here in this example I tried to capture two Int values and then capture them together as a struct. This gives a "Thread 1: signal SIGABRT" error.
(NOTE: I know that my example could be fixed by simply not nesting the Captures and handling the pattern matching differently. This is just simplified example code for the sake of this question.)
let intCapture = Regex {
TryCapture(as: Reference(Int.self)) {
OneOrMore(.digit)
} transform: { result in
return Int(result)
}
}
let mainPattern = Regex {
TryCapture(as: Reference(Floor.self)) {
"floor #: "
intCapture
" has "
intCapture
" rooms"
}transform: { ( stringMatch, floorInt, roomInt ) in
return Floor(floorNumber: floorInt, roomCount: roomInt)
}
}
struct Floor {
let floorNumber: Int
let roomCount: Int
}
let testString = "floor #: 34 has 25 rooms"
let floorData = testString.firstMatch(of: mainPattern)
After looking into it, I found that in the mainPattern's 'transform' the 'floorInt' and 'roomInt' are what is causing the problem.
The funny part is that when you look at the 'Quick Help'/Option+click, it shows that they are both type Int! It knows what is there but you are not able to capture it!
Further, when I erase one of them, let's say 'floorInt', it gives this error:
Contextual closure type '(Substring) throws -> Floor?' expects 1 argument, but 2 were used in closure body
So really, even though for SOME reason it does know that there are two captured Int values there, it doesn't let you access them for the sake of the transform.
Not deterred, I was helped out in another question by a very helpful user who pointed me to the Evolution submission where they mentioned a .mapOutput, but sadly it seems this particular feature was never implemented!
Is there no real way to create a new transformed value from nested transformed values like this? Any help would be greatly appreciated.

How to "Catch" both a non-numeric and Incomplete ArrayList capacity

I created an ArrayList that has a capacity of 5 Ints. I can get the if statement to run if its less than 5 but I can't seem to get the else statement to "Catch" Non-Numerics. For example if I enter 1,2,3,Hello; it will print "Wrong number of sales provided."
fun main(){
val stats = ArrayList<Int>(5)
println("Enter your numbers: ")
try {
while (stats.size < 5) {
stats.add(readLine()!!.toInt())
}
}catch (e: NumberFormatException){
if (stats.size != 5){
println("The wrong number of sales provided.")
}else{
println("All inputs should be numeric.")
}
exitProcess(status = 1)
}
calStats(stats)
}
fun calStats(sales: Collection<Int>){
val min = sales.minOrNull()
val max = sales.maxOrNull()
println("Min: $min\nMax: $max\nRange: ${(max!! - min!!)}\nAverage: ${(BigDecimal(sales.average()).setScale(0, RoundingMode.FLOOR))} ")
}
The problem is how you are handling your exception, in fact since you are checking the size of your array first, if you enter 1,2,3,'Hello' and there are 4 elements in this list it will output the wrong message.
You should nest your try ... catch block inside the while loop.
Actually the if (stats.size != 5) control is reduntant since the while loop will execute until stats has a size of 5, unless the NumberFormatException is thrown.
Try to edit your code like this:
fun main() {
val stats = ArrayList<Int>(5)
println("Enter your numbers: ")
while (stats.size < 5) {
try {
stats.add(readLine()!!.toInt())
} catch (e: NumberFormatException) {
println("All inputs should be numeric.")
exitProcess(status = 1)
}
}
calStats(stats)
}
Your logic loops through, reading lines and adding them until you've collected 5 values. As soon as it fails at parsing one of those lines as an Int, it throws a NumberFormatException and you hit the catch block.
The first thing the catch block does is check how many values you've successfully added to the stats list. If it's not exactly 5, it prints the "wrong number" error instead of the "inputs need to be numeric" one.
But if you think about it, the size is never going to be 5 when you hit the catch block - if you've added 5 items successfully, the while loop ends and there's no way it's going to throw. If you have 4 items and the 5th one fails, it doesn't get added, so you have 4 items when you hit the catch block.
If you need to do it this way, you probably want to keep a counter of how many lines you've read and refer to that. But you'll still throw once you hit the first non-numeric value (even if there's 5 of them to be read in total) and the counter will show how far you've got, not how many there are.
Probably the easiest way is to read in 5 lines to a list, and then transform them to Ints and add those to your collection. That way you can check if you have less than 5 before you start, and handle that case separately.
Something like
// create a list by calling readline() 5 times - produces null at EOF
val lines = List(5) { readLine() }
if (lines.contains(null)) { // handle your "not enough items" here }
// parse all lines as Ints - any that fail will be null
val stats = lines.map { it.toIntOrNull() } // or map(String::toIntOrNull)
if (stats.contains(null)) { // handle bad values here }
Kotlin's style tries to avoid exceptions, which is why you have functions like toIntOrNull alongside toInt - it lets you use nulls as a "failure value" that you can handle in normal code. But you can always throw an exception if you want (e.g. when you get a null line) and handle it in your catch block.

How to properly iterate over arrays in kotlin

I am currently learning kotlin and therefore following the kotlin track on exercism. The following exercise required me to calculate the Hamming difference between two Strings (so basically just counting the number of differences).
I got to the solution with the following code:
object Hamming {
fun compute(dnaOne: String, dnaTwo: String): Int {
if (dnaOne.length != dnaTwo.length) throw IllegalArgumentException("left and right strands must be of equal length.")
var counter = 0
for ((index, letter) in dnaOne.toCharArray().withIndex()) {
if (letter != dnaTwo.toCharArray()[index]) {
counter++
}
}
return counter
}
}
however, in the beginning I tried to do dnaOne.split("").withIndex() instead of dnaOne.toCharArray().withIndex() which did not work, it would literally stop after the first iteration and the following example
Hamming.compute("GGACGGATTCTG", "AGGACGGATTCT") would return 1 instead of the correct integer 9 (which only gets returned when using toCharArray)
I would appreciate any explanation
I was able to simplify this by using the built-in CharSequence.zip function because StringimplementsCharSequence` in Kotlin.
According to the documentation for zip:
Returns a list of pairs built from the characters of this and the [other] char sequences with the same index
The returned list has length of the shortest char sequence.
Which means we will get a List<Pair<Char,Char>> back (a list of pairs of letters in the same positions). Now that we have this, we can use Iterable.count to determine how many of them are different.
I implemented this as an extension function on String rather than in an object:
fun String.hamming(other: String): Int =
if(this.length != other.length) {
throw IllegalArgumentException("String lengths must match")
} else {
this.zip(other).count { it.first != it.second }
}
This also becomes a single expression now.
And to call this:
val ham = "GGACGGATTCTG".hamming("AGGACGGATTCT")
println("Hamming distance: $ham")

What could be a reason for `_localctx` being null in an antlr4 semantic predicate?

I'm using list labels to gather tokens and semantic predicates to validate sequences in my parser grammar. E.g.
line
:
(text+=WORD | text+=NUMBER)+ ((BLANK | SKIP)+ (text+=WORD | text+=NUMBER)+)+
{Parser.validateContext(_localctx)}?
(BLANK | SKIP)*
;
where
WORD: [\u0021-\u002F\u003A-\u007E]+; // printable ASCII characters (excluding SP and numbers)
NUMBER: [\u0030-\u0039]+; // printable ASCII number characters
BLANK: '\u0020';
SKIP: '\u0020\u0020' | '\t'; // two SPs or a HT symbol
The part of Parser.validateContext used to validate the line rule would be implemented like this
private static final boolean validateContext(ParserRuleContext context) {
//.. other contexts
if(context instanceof LineContext)
return "<reference-sequence>".equals(Parser.joinTokens(((LineContext) context).text, " "));
return false;}
where Parser.joinTokens is defined as
private static String joinTokens(java.util.List<org.antlr.v4.runtime.Token> tokens, String delimiter) {
StringBuilder builder = new StringBuilder();
int i = 0, n;
if((n = tokens.size()) == 0) return "";
builder.append(tokens.get(0).getText());
while(++i < n) builder.append(delimiter + tokens.get(i).getText());
return builder.toString();}
Both are put in a #parser::members clause a the beginning of the grammar file.
My problem is this: sometimes the _localctx reference is null and I receive "no viable alternative" errors. These are probably caused because the failing predicate guards the respective rule and no alternative is given.
Is there a reason–potentially an error on my part–why _localctx would be null?
UPDATE: The answer to this question seems to suggest that semantic predicates are also called during prediction. Maybe during prediction no context is created and _localctx is set to null.
The semantics of _localctx in a predicate are not defined. Allowable behavior includes, but is not limited to the following (and may change during any release):
Failing to compile (no identifier with that name)
Using the wrong context object
Not having a context object (null)
To reference the context of the current rule from within a predicate, you need to use $ctx instead.
Note that the same applies for rule parameters, locals, and/or return values which are used in a predicate. For example, the parameter a cannot be referenced as a, but must instead be $a.

Expression Evaluation and Tree Walking using polymorphism? (ala Steve Yegge)

This morning, I was reading Steve Yegge's: When Polymorphism Fails, when I came across a question that a co-worker of his used to ask potential employees when they came for their interview at Amazon.
As an example of polymorphism in
action, let's look at the classic
"eval" interview question, which (as
far as I know) was brought to Amazon
by Ron Braunstein. The question is
quite a rich one, as it manages to
probe a wide variety of important
skills: OOP design, recursion, binary
trees, polymorphism and runtime
typing, general coding skills, and (if
you want to make it extra hard)
parsing theory.
At some point, the candidate hopefully
realizes that you can represent an
arithmetic expression as a binary
tree, assuming you're only using
binary operators such as "+", "-",
"*", "/". The leaf nodes are all
numbers, and the internal nodes are
all operators. Evaluating the
expression means walking the tree. If
the candidate doesn't realize this,
you can gently lead them to it, or if
necessary, just tell them.
Even if you tell them, it's still an
interesting problem.
The first half of the question, which
some people (whose names I will
protect to my dying breath, but their
initials are Willie Lewis) feel is a
Job Requirement If You Want To Call
Yourself A Developer And Work At
Amazon, is actually kinda hard. The
question is: how do you go from an
arithmetic expression (e.g. in a
string) such as "2 + (2)" to an
expression tree. We may have an ADJ
challenge on this question at some
point.
The second half is: let's say this is
a 2-person project, and your partner,
who we'll call "Willie", is
responsible for transforming the
string expression into a tree. You get
the easy part: you need to decide what
classes Willie is to construct the
tree with. You can do it in any
language, but make sure you pick one,
or Willie will hand you assembly
language. If he's feeling ornery, it
will be for a processor that is no
longer manufactured in production.
You'd be amazed at how many candidates
boff this one.
I won't give away the answer, but a
Standard Bad Solution involves the use
of a switch or case statment (or just
good old-fashioned cascaded-ifs). A
Slightly Better Solution involves
using a table of function pointers,
and the Probably Best Solution
involves using polymorphism. I
encourage you to work through it
sometime. Fun stuff!
So, let's try to tackle the problem all three ways. How do you go from an arithmetic expression (e.g. in a string) such as "2 + (2)" to an expression tree using cascaded-if's, a table of function pointers, and/or polymorphism?
Feel free to tackle one, two, or all three.
[update: title modified to better match what most of the answers have been.]
Polymorphic Tree Walking, Python version
#!/usr/bin/python
class Node:
"""base class, you should not process one of these"""
def process(self):
raise('you should not be processing a node')
class BinaryNode(Node):
"""base class for binary nodes"""
def __init__(self, _left, _right):
self.left = _left
self.right = _right
def process(self):
raise('you should not be processing a binarynode')
class Plus(BinaryNode):
def process(self):
return self.left.process() + self.right.process()
class Minus(BinaryNode):
def process(self):
return self.left.process() - self.right.process()
class Mul(BinaryNode):
def process(self):
return self.left.process() * self.right.process()
class Div(BinaryNode):
def process(self):
return self.left.process() / self.right.process()
class Num(Node):
def __init__(self, _value):
self.value = _value
def process(self):
return self.value
def demo(n):
print n.process()
demo(Num(2)) # 2
demo(Plus(Num(2),Num(5))) # 2 + 3
demo(Plus(Mul(Num(2),Num(3)),Div(Num(10),Num(5)))) # (2 * 3) + (10 / 2)
The tests are just building up the binary trees by using constructors.
program structure:
abstract base class: Node
all Nodes inherit from this class
abstract base class: BinaryNode
all binary operators inherit from this class
process method does the work of evaluting the expression and returning the result
binary operator classes: Plus,Minus,Mul,Div
two child nodes, one each for left side and right side subexpressions
number class: Num
holds a leaf-node numeric value, e.g. 17 or 42
The problem, I think, is that we need to parse perentheses, and yet they are not a binary operator? Should we take (2) as a single token, that evaluates to 2?
The parens don't need to show up in the expression tree, but they do affect its shape. E.g., the tree for (1+2)+3 is different from 1+(2+3):
+
/ \
+ 3
/ \
1 2
versus
+
/ \
1 +
/ \
2 3
The parentheses are a "hint" to the parser (e.g., per superjoe30, to "recursively descend")
This gets into parsing/compiler theory, which is kind of a rabbit hole... The Dragon Book is the standard text for compiler construction, and takes this to extremes. In this particular case, you want to construct a context-free grammar for basic arithmetic, then use that grammar to parse out an abstract syntax tree. You can then iterate over the tree, reducing it from the bottom up (it's at this point you'd apply the polymorphism/function pointers/switch statement to reduce the tree).
I've found these notes to be incredibly helpful in compiler and parsing theory.
Representing the Nodes
If we want to include parentheses, we need 5 kinds of nodes:
the binary nodes: Add Minus Mul Divthese have two children, a left and right side
+
/ \
node node
a node to hold a value: Valno children nodes, just a numeric value
a node to keep track of the parens: Parena single child node for the subexpression
( )
|
node
For a polymorphic solution, we need to have this kind of class relationship:
Node
BinaryNode : inherit from Node
Plus : inherit from Binary Node
Minus : inherit from Binary Node
Mul : inherit from Binary Node
Div : inherit from Binary Node
Value : inherit from Node
Paren : inherit from node
There is a virtual function for all nodes called eval(). If you call that function, it will return the value of that subexpression.
String Tokenizer + LL(1) Parser will give you an expression tree... the polymorphism way might involve an abstract Arithmetic class with an "evaluate(a,b)" function, which is overridden for each of the operators involved (Addition, Subtraction etc) to return the appropriate value, and the tree contains Integers and Arithmetic operators, which can be evaluated by a post(?)-order traversal of the tree.
I won't give away the answer, but a
Standard Bad Solution involves the use
of a switch or case statment (or just
good old-fashioned cascaded-ifs). A
Slightly Better Solution involves
using a table of function pointers,
and the Probably Best Solution
involves using polymorphism.
The last twenty years of evolution in interpreters can be seen as going the other way - polymorphism (eg naive Smalltalk metacircular interpreters) to function pointers (naive lisp implementations, threaded code, C++) to switch (naive byte code interpreters), and then onwards to JITs and so on - which either require very big classes, or (in singly polymorphic languages) double-dispatch, which reduces the polymorphism to a type-case, and you're back at stage one. What definition of 'best' is in use here?
For simple stuff a polymorphic solution is OK - here's one I made earlier, but either stack and bytecode/switch or exploiting the runtime's compiler is usually better if you're, say, plotting a function with a few thousand data points.
Hm... I don't think you can write a top-down parser for this without backtracking, so it has to be some sort of a shift-reduce parser. LR(1) or even LALR will of course work just fine with the following (ad-hoc) language definition:
Start -> E1
E1 -> E1+E1 | E1-E1
E1 -> E2*E2 | E2/E2 | E2
E2 -> number | (E1)
Separating it out into E1 and E2 is necessary to maintain the precedence of * and / over + and -.
But this is how I would do it if I had to write the parser by hand:
Two stacks, one storing nodes of the tree as operands and one storing operators
Read the input left to right, make leaf nodes of the numbers and push them into the operand stack.
If you have >= 2 operands on the stack, pop 2, combine them with the topmost operator in the operator stack and push this structure back to the operand tree, unless
The next operator has higher precedence that the one currently on top of the stack.
This leaves us the problem of handling brackets. One elegant (I thought) solution is to store the precedence of each operator as a number in a variable. So initially,
int plus, minus = 1;
int mul, div = 2;
Now every time you see a a left bracket increment all these variables by 2, and every time you see a right bracket, decrement all the variables by 2.
This will ensure that the + in 3*(4+5) has higher precedence than the *, and 3*4 will not be pushed onto the stack. Instead it will wait for 5, push 4+5, then push 3*(4+5).
Re: Justin
I think the tree would look something like this:
+
/ \
2 ( )
|
2
Basically, you'd have an "eval" node, that just evaluates the tree below it. That would then be optimized out to just being:
+
/ \
2 2
In this case the parens aren't required and don't add anything. They don't add anything logically, so they'd just go away.
I think the question is about how to write a parser, not the evaluator. Or rather, how to create the expression tree from a string.
Case statements that return a base class don't exactly count.
The basic structure of a "polymorphic" solution (which is another way of saying, I don't care what you build this with, I just want to extend it with rewriting the least amount of code possible) is deserializing an object hierarchy from a stream with a (dynamic) set of known types.
The crux of the implementation of the polymorphic solution is to have a way to create an expression object from a pattern matcher, likely recursive. I.e., map a BNF or similar syntax to an object factory.
Or maybe this is the real question:
how can you represent (2) as a BST?
That is the part that is tripping me
up.
Recursion.
#Justin:
Look at my note on representing the nodes. If you use that scheme, then
2 + (2)
can be represented as
.
/ \
2 ( )
|
2
should use a functional language imo. Trees are harder to represent and manipulate in OO languages.
As people have been mentioning previously, when you use expression trees parens are not necessary. The order of operations becomes trivial and obvious when you're looking at an expression tree. The parens are hints to the parser.
While the accepted answer is the solution to one half of the problem, the other half - actually parsing the expression - is still unsolved. Typically, these sorts of problems can be solved using a recursive descent parser. Writing such a parser is often a fun exercise, but most modern tools for language parsing will abstract that away for you.
The parser is also significantly harder if you allow floating point numbers in your string. I had to create a DFA to accept floating point numbers in C -- it was a very painstaking and detailed task. Remember, valid floating points include: 10, 10., 10.123, 9.876e-5, 1.0f, .025, etc. I assume some dispensation from this (in favor of simplicty and brevity) was made in the interview.
I've written such a parser with some basic techniques like
Infix -> RPN and
Shunting Yard and
Tree Traversals.
Here is the implementation I've came up with.
It's written in C++ and compiles on both Linux and Windows.
Any suggestions/questions are welcomed.
So, let's try to tackle the problem all three ways. How do you go from an arithmetic expression (e.g. in a string) such as "2 + (2)" to an expression tree using cascaded-if's, a table of function pointers, and/or polymorphism?
This is interesting,but I don't think this belongs to the realm of object-oriented programming...I think it has more to do with parsing techniques.
I've kind of chucked this c# console app together as a bit of a proof of concept. Have a feeling it could be a lot better (that switch statement in GetNode is kind of clunky (it's there coz I hit a blank trying to map a class name to an operator)). Any suggestions on how it could be improved very welcome.
using System;
class Program
{
static void Main(string[] args)
{
string expression = "(((3.5 * 4.5) / (1 + 2)) + 5)";
Console.WriteLine(string.Format("{0} = {1}", expression, new Expression.ExpressionTree(expression).Value));
Console.WriteLine("\nShow's over folks, press a key to exit");
Console.ReadKey(false);
}
}
namespace Expression
{
// -------------------------------------------------------
abstract class NodeBase
{
public abstract double Value { get; }
}
// -------------------------------------------------------
class ValueNode : NodeBase
{
public ValueNode(double value)
{
_double = value;
}
private double _double;
public override double Value
{
get
{
return _double;
}
}
}
// -------------------------------------------------------
abstract class ExpressionNodeBase : NodeBase
{
protected NodeBase GetNode(string expression)
{
// Remove parenthesis
expression = RemoveParenthesis(expression);
// Is expression just a number?
double value = 0;
if (double.TryParse(expression, out value))
{
return new ValueNode(value);
}
else
{
int pos = ParseExpression(expression);
if (pos > 0)
{
string leftExpression = expression.Substring(0, pos - 1).Trim();
string rightExpression = expression.Substring(pos).Trim();
switch (expression.Substring(pos - 1, 1))
{
case "+":
return new Add(leftExpression, rightExpression);
case "-":
return new Subtract(leftExpression, rightExpression);
case "*":
return new Multiply(leftExpression, rightExpression);
case "/":
return new Divide(leftExpression, rightExpression);
default:
throw new Exception("Unknown operator");
}
}
else
{
throw new Exception("Unable to parse expression");
}
}
}
private string RemoveParenthesis(string expression)
{
if (expression.Contains("("))
{
expression = expression.Trim();
int level = 0;
int pos = 0;
foreach (char token in expression.ToCharArray())
{
pos++;
switch (token)
{
case '(':
level++;
break;
case ')':
level--;
break;
}
if (level == 0)
{
break;
}
}
if (level == 0 && pos == expression.Length)
{
expression = expression.Substring(1, expression.Length - 2);
expression = RemoveParenthesis(expression);
}
}
return expression;
}
private int ParseExpression(string expression)
{
int winningLevel = 0;
byte winningTokenWeight = 0;
int winningPos = 0;
int level = 0;
int pos = 0;
foreach (char token in expression.ToCharArray())
{
pos++;
switch (token)
{
case '(':
level++;
break;
case ')':
level--;
break;
}
if (level <= winningLevel)
{
if (OperatorWeight(token) > winningTokenWeight)
{
winningLevel = level;
winningTokenWeight = OperatorWeight(token);
winningPos = pos;
}
}
}
return winningPos;
}
private byte OperatorWeight(char value)
{
switch (value)
{
case '+':
case '-':
return 3;
case '*':
return 2;
case '/':
return 1;
default:
return 0;
}
}
}
// -------------------------------------------------------
class ExpressionTree : ExpressionNodeBase
{
protected NodeBase _rootNode;
public ExpressionTree(string expression)
{
_rootNode = GetNode(expression);
}
public override double Value
{
get
{
return _rootNode.Value;
}
}
}
// -------------------------------------------------------
abstract class OperatorNodeBase : ExpressionNodeBase
{
protected NodeBase _leftNode;
protected NodeBase _rightNode;
public OperatorNodeBase(string leftExpression, string rightExpression)
{
_leftNode = GetNode(leftExpression);
_rightNode = GetNode(rightExpression);
}
}
// -------------------------------------------------------
class Add : OperatorNodeBase
{
public Add(string leftExpression, string rightExpression)
: base(leftExpression, rightExpression)
{
}
public override double Value
{
get
{
return _leftNode.Value + _rightNode.Value;
}
}
}
// -------------------------------------------------------
class Subtract : OperatorNodeBase
{
public Subtract(string leftExpression, string rightExpression)
: base(leftExpression, rightExpression)
{
}
public override double Value
{
get
{
return _leftNode.Value - _rightNode.Value;
}
}
}
// -------------------------------------------------------
class Divide : OperatorNodeBase
{
public Divide(string leftExpression, string rightExpression)
: base(leftExpression, rightExpression)
{
}
public override double Value
{
get
{
return _leftNode.Value / _rightNode.Value;
}
}
}
// -------------------------------------------------------
class Multiply : OperatorNodeBase
{
public Multiply(string leftExpression, string rightExpression)
: base(leftExpression, rightExpression)
{
}
public override double Value
{
get
{
return _leftNode.Value * _rightNode.Value;
}
}
}
}
Ok, here is my naive implementation. Sorry, I did not feel to use objects for that one but it is easy to convert. I feel a bit like evil Willy (from Steve's story).
#!/usr/bin/env python
#tree structure [left argument, operator, right argument, priority level]
tree_root = [None, None, None, None]
#count of parethesis nesting
parenthesis_level = 0
#current node with empty right argument
current_node = tree_root
#indices in tree_root nodes Left, Operator, Right, PRiority
L, O, R, PR = 0, 1, 2, 3
#functions that realise operators
def sum(a, b):
return a + b
def diff(a, b):
return a - b
def mul(a, b):
return a * b
def div(a, b):
return a / b
#tree evaluator
def process_node(n):
try:
len(n)
except TypeError:
return n
left = process_node(n[L])
right = process_node(n[R])
return n[O](left, right)
#mapping operators to relevant functions
o2f = {'+': sum, '-': diff, '*': mul, '/': div, '(': None, ')': None}
#converts token to a node in tree
def convert_token(t):
global current_node, tree_root, parenthesis_level
if t == '(':
parenthesis_level += 2
return
if t == ')':
parenthesis_level -= 2
return
try: #assumption that we have just an integer
l = int(t)
except (ValueError, TypeError):
pass #if not, no problem
else:
if tree_root[L] is None: #if it is first number, put it on the left of root node
tree_root[L] = l
else: #put on the right of current_node
current_node[R] = l
return
priority = (1 if t in '+-' else 2) + parenthesis_level
#if tree_root does not have operator put it there
if tree_root[O] is None and t in o2f:
tree_root[O] = o2f[t]
tree_root[PR] = priority
return
#if new node has less or equals priority, put it on the top of tree
if tree_root[PR] >= priority:
temp = [tree_root, o2f[t], None, priority]
tree_root = current_node = temp
return
#starting from root search for a place with higher priority in hierarchy
current_node = tree_root
while type(current_node[R]) != type(1) and priority > current_node[R][PR]:
current_node = current_node[R]
#insert new node
temp = [current_node[R], o2f[t], None, priority]
current_node[R] = temp
current_node = temp
def parse(e):
token = ''
for c in e:
if c <= '9' and c >='0':
token += c
continue
if c == ' ':
if token != '':
convert_token(token)
token = ''
continue
if c in o2f:
if token != '':
convert_token(token)
convert_token(c)
token = ''
continue
print "Unrecognized character:", c
if token != '':
convert_token(token)
def main():
parse('(((3 * 4) / (1 + 2)) + 5)')
print tree_root
print process_node(tree_root)
if __name__ == '__main__':
main()