Alternative to polymorphism in non-OOP programming? - oop

Assume we have a drawing program with different elements, such as circle, rectangle, triangle and so on. Different kinds of objects that will all need similar function such as draw() to display themselves.
I wonder how would a programmer approach the problem that is nowadays typically solved by polymorphism, i.e. go through a collection of non-identical elements and invoke common functionality across the different objects.
One way that comes to mind is to have a struct with a function pointer to the appropriate function (or index in a function pointer array) as well as a void pointer to the actual instance, and pass the pointer which is cast to the proper type in the function. But that is just how I - a guy who is clueless on the subject would do it.
I do realize this might be a noobish question, but since I haven't been around in the "olden" days, I really wonder how was this problem tackled. What kind of approach was used in procedural programming and did it have a performance benefit, since we all do know polymorphism has an overhead even in fast languages like C++, due to the virtual method lookup.

A really simple example.
If this interest you you can find more of this in the Linux Kernel.
#include <stdio.h>
struct shape {
void (*say_hello)(void);
};
void circle_say_hello(void)
{
printf("Hi I am circle!\n");
}
void square_say_hello(void)
{
printf("Meh I am square.\n");
}
#define ARRAY_SIZE(a) (sizeof(a)/sizeof(a[0]))
int main(int argc, char *argv[])
{
struct shape circle = { .say_hello = circle_say_hello, };
struct shape square = { .say_hello = square_say_hello, };
struct shape* shapes[] = {&circle, &square};
int i;
for (i = 0; i < ARRAY_SIZE(shapes); i++) {
if (shapes[i] && shapes[i]->say_hello)
shapes[i]->say_hello();
}
return 0;
}

In procedural languages such as C, this would be tackled by defining separate implementations of the draw() function for each custom data type (probably represented as a struct). Any common functionality would be factored out into a separate function which operated on shared elements of each struct (such as the x and y coordinate of the center of the object, which would appear in each one). From a code and functionality perspective, this isn't much different from the OOP layout utilizing polymorphism, where you still have to implement a shared draw() method in a base class and override it in the specific sub-class. In the case of a procedural language, we just wouldn't split these function definitions out into separate "objects".
There are some fancy ways to get object-like behavior out of a procedural language, such as a union type or a single monolithic type with extra booleans to determine if a particular element is in use. That would allow you to write a single draw() function that could perform logic switching based on which elements were enabled. In practice, the only place I have seen much of that is in CORBA-based systems where a program written in C had to mimic some of the behavior of an OOP language which was propagated through the IDL (i.e. translation of Java objects to constructs which could be decoded into C-style structs).
As for the overhead of virtual method lookup in languages such as C++ and Java, that is something that cannot be entirely avoided in an object-oriented language. It can be pretty well mitigated with proper use of the final keyword (which allows the compiler / JVM to optimize the method lookup tables).

This is not a direct answer to your example but an address to your comment, which shows a wrong perspective IMHO
I was just wondering about that particular problem, mostly interested
if there is a more efficient way that avoids the performance overhead
of virtual methods
There is something to understand here. Everything has a tradeoff. Design patterns and OO have all the known advantages we have come to love, but have disadvantages as well e.g. too many classes, memory overhead, performance overhead due to many method calls etc.
On the other hand the old "procedural" way had some advantages also to be objective; it was "simple" to code (no need to think how to design a system, just put everything in main) and had less overhead in many aspects (less memory overhead as less classes are needed and more compact objects -no need for virtual tables etc- and less method calls so perhaps better performance, no performance overhead for dynamic binding - whatever the overhead is nowadays anyway...-).
But it is not what the trade-offs of a particular problem instance are, it is what the experience has shown what is the proper way to build software. Reuse of code that is modular and assists in separate testing (quality assurance), readable, maintainable, flexible to extend are attributes that have been well understood that should be the main driver in software development.
So there are certain cases that a really good programmer in C/C++ could do the "old way" as you say, but is the performance benefit that it incur for this particular program worth the fact that no-one would be able to maintain or sustain it afterwards?
To give another similar example: You could ask in the same fashion?
Why multi-tier architectures in web development? Just put everything into one server and it will be A LOT FASTER since there will be no latency in querying the back-end and all the layers for the data of the UI or the network latency for a query of a remote database etc.
Sure, you have a point. But then ask your self, can this scale as load increases? The answer is no. So is scalability important to you or you want to keep the "put everything in one server" idea? If your income comes from e-sites, the fact that you can not serve more customers would not make your client happy just because you served the first 100 really fast...Anyway this is my opinion

Related

Is Polymorphism a waste to apply for the classes that we exactly know the type prior run-time?

Run-time Polymorphism can be used to let the run-time to dynamically load the exact concrete class of an abstract class/interface. (You can take Animal/Dog, Vehicle/Car examples)
But when we know the exact concrete class #coding-time (compile-time), does it really need to forcefully apply polymorphism?
When I write OO code, I tend to use most-general type I can on the left-hand side of the assignment. This immediately means that my answer to your question is - no.
Here's the example:
Animal x = new Dog();
...
x.move();
The reason why I'm doing this is that I'm probably going to split beginning and end of the operation into two distinct operations. My methods are extremely short in practice.
Applied to the same example:
function moveDog() {
move(new Dog());
}
function move(Animal animal) {
animal.move();
}
As you can see, it would make no sense for the move function to know what kind of animal it is really moving.
Generally, it is compiler's duty to figure whether in a given code base any concrete call has been made with an overridden move() method. Some compilers can detect that no overridden method will be subjected to them and then they remove dynamic dispatch at compile time. With some luck, my code above would compile the same whether move function receives Animal or Dog.
Now, this is theory. In practice, there are two important things. First, compilers that are widely used have still not started using such aggressive optimization techniques as detecting static method calls, as opposed to calls that require dynamic dispatch. Second, the first thing doesn't matter too much with CPU power we have today.
I have been writing highly optimized code for fifteen years already and I have met the situation in which I had to factor polymorphic calls out. That is why I strongly recommend to apply polymorphism as much as possible. When the time comes to add some classes, to incorporate new features, polymorphic calls will likely be the tool to seamlessly add new classes to the existing design. If you used overly concrete types during development, it could easily happen that you cannot add new feature to the given code base.
But when we know the exact concrete class #coding-time (compile-time), does it really need to forcefully apply polymorphism?
Knowing the type at compile time is not necessarily a yes/no thing across all the code in an app and an object's entire lifetime, given techniques for type erasure. But, ignoring those classic uses of polymorphism, there are still other potential reasons such as...
(sorry - pretty obvious one this) to make it easier to change the implementation should another become available later
to make it easier to "mock" an implementation for testing (i.e. provide objects that pretend to provide some service or function, but have more scripted/controllable/observable behaviours to let tests put some dependent code through its paces)
hide aspects of the implementation that might otherwise have to be exposed (e.g. in C++, a class/struct definition must declare all the protected and private members)
this is sometimes for Intellectual Property protection; at other times, so more changes can be made to the implementation without having to make a change the "header" file that would typically trigger recompilation of a lot of dependent code
to aid in modelling and application design, using the "interfaces" to cleanly specify the intended APIs, which can then provide a more stable reference for comparison as the implementations are fleshed out

Is it bad form to have a a MiscUtilities class? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
Our company keeps a MiscUtilities class that consists solely of public static methods that do often unrelated tasks like converting dates from String to Calendar and writing ArrayLists to files. We refer to it in other classes and find it pretty convenient. However, I've seen that sort of Utilities class derided on TheDailyWTF. I'm just wondering if there's any actual downside to this sort of class, and what the alternatives are.
Rather than giving personal opinion, I will quote from an authoritative source in the Java community, and examples from 2 very reputable third party libraries.
A quote from Effective Java 2nd Edition, Item 4: Enforce noninstantiability with a private constructor:
Occasionally you'll want to write a class that is just a grouping of static methods and static fields. Such classes have acquired a bad reputation because some people abuse them to avoid thinking in terms of objects, but they do have valid uses. They can be used to group related methods on primitive values or arrays, in the manner of java.lang.Math or java.util.Arrays. They can also be used to group static methods, including factory methods, for objects that implements a particular interface, in the manner of java.util.Collections. Lastly, they can be used to group methods on a final class, instead of extending the class.
Java libraries has many examples of such utility classes.
Apache Commons Lang follows the TypeUtils naming convention
ArrayUtils, StringUtils, ObjectUtils, BooleanUtils, etc
Guava follows the Types naming convention
Objects, Strings, Throwables, Collections2, Iterators, Iterables, Lists, Maps, etc.
The package summary actually has a specific section on classes of static utility methods
Another entire package consists of nothing but utility classes for working with Java primitives, Ints, Floats, Booleans, etc.
Short summary
Prefer good OOP design, always
static utility classes have valid uses to group related methods on:
Primitives (since they're not objects)
Interfaces (since they can't have anything concrete of their own)
final classes (since they're not extensible)
Prefer good organization, always
Group utility methods for SomeType to SomeTypeUtils or SomeTypes
Avoid a single big utility class that contains various unrelated tasks on different types/concepts
Convenient, most likely.
Possible to grow into a scary, hard to maintain swiss-army-rocket-chainsaw-and-floor-polisher, also most likely.
I'd recommend separating the various tasks into separate classes, with some logical grouping besides "won't fit anywhere else".
The risk here is that the class becomes a tangled mess nobody fully comprehends and noone dares to touch - or replace. If you feel that is an acceptable risk and/or avoidable under your circumstances, nothing really prevents you from using it.
I've never been a fan of the MiscUtilities class. My biggest issue is that I never know what is in it. Anything filed under miscellaneous is not discoverable. Instead I prefer to use a common dll that I can import into my projects that contains well named, separated classes for different purposes. The difference is subtle, but I find that it makes my life a little easier.
For languages that support functions, this sort of class is undeniably bad form.
For languages that don't, this sort of class isn't, and is probably superior to extending other classes with random utility methods. The static utility methods, because they are in some other class, can only use the public interface of the objects they handle, which decreases the likelihood of certain kinds of bug. And this approach also avoids polluting public interfaces with a random grab bag of whatever people happened to find useful at the time.
There's a certain amount of personal style involved of course. I'm not a big believer in classes that provide everything under the sun (even C++'s std::string is a tad over-featured for my taste) and tend to prefer to have helper functionality as separate functions. Makes maintenance of the class easier, forces the public interface to be useful and efficient, and with duck-typing style mechanisms the external functions can be used across a wide range of types without having to duplicate source text or share base classes and so on. (The oft-derided algorithms in the C++ Standard Library are a good demonstration of this, imperfect and verbose as they are.)
That said, I've worked with many who complain about strings that don't know how to interpret themselves as filenames, or split themselves into words, or what have you, and so on. (I pick on strings because they seem to be the prime target for utility functions...) I happen to think there are unseen maintenance and reliability costs associated with having large classes like that, quite apart from the ugliness of having a nominally simple class that's actually a vast illogical mishmash of unrelated concerns whose grubby fingers end up poking themselves into every last corner -- because your self-tokenizing string needs some kind of container to put the tokens in, right?! -- but it's a balancing act, even if my wording suggests it's more clean-cut than that.
I'm not a big believer in the notion of "OO dogma", but perhaps the paranoid might see it at work here. There's no good reason that all functionality should be attached to a particular class, and many good reasons why it should not. But some languages still don't allow the creation of functions, which does nothing to remove the need for them and forces people to work around the restriction by creating classes that consist of nothing but static methods. This rather overloads the meaning of the class concept, to my mind, and not in any good way.
So that IS a good reason to rail against this practice, but it's pretty futile unless the language changes to accommodate what people need to do. And languages don't come without functions unless their designers have an axe to grind, or there are technical reasons for it, so I should think that change in either case is unlikely.
I suppose the executive summary is: no.
Well, bad utility classes are derided on TheDailyWTF :)
There's really nothing wrong with having a generic utilities class for miscellaneous static business functions. I mean, you could try to put it all into a more object oriented approach, but at what cost in time and effort to the business and for what trade-off of maintainability? If the latter outweighs the former, go for it.
One approach you may be able to take, depending on the language, etc., is to perhaps move some of the logic into extensions on existing objects. For example, extending the String class (thinking in C# here) with a method that tries to parse the string into a DateTime. An in-house library of extensions just enhances the language with your business' own little DSL(s).
The company I work for has a class like that in its repository. Personally I find it annoying because you have to be really intimate with the class in order to know what it's useful for. Consequently, I've found myself re-writing methods that this class already covers! Double annoying because I've now wasted my time.
I would prefer a more object oriented approach that would lead to expandability. Have a Utilities class for sure, but inside it put other classes that expand toward specific functionality. Like Utilities.XML, Utilities.DataFunctions, Utilities.WhateverYouWant. That way you can expand and eventually take your 20 function MiscUtilities class and turn it into a 500 function class library.
A Class Library like this could then be used by anyone, and added to by anyone (with privileges) in a logically organized way.
I think the wrong defect of such a class is that it break Separation of concerns principle. I usually create multiple "Helpers" class to contains widely used, public static methods, for example ArrayHelpers to writing ArrayLists to files, and DatesHelper to converting dates from String to Calendar.
Moreover, if the class does contain complicated methods, it's better to try to refactor them using more object-oriented tecnique.
You can always switch from your "Helpers" class to the use of various OO pattern, leaving your old static methods to function as a Facade.
Yuo'll find great benefits everytime you'll be able to do so.
I keep a separate misc class for each project, and copy/paste code from other projects as needed. Perhaps not the best approach, but I prefer to avoid cross-project dependencies.
Examples of things in my helper class:
hex2, hex4, and hex8 (accept integer parameters, except hex8 which has integer and uinteger variations; all versions ignore higher-order bits)
byt (convert 8 lsb's of argument into a byte)
getSI, getUI, getSL, getUL (each takes a byte array and an offset, and returns the little-endian signed word, unsigned word, signed 32-bit word, or unsigned 32-bit word at that offset
putSI, putUI, putSL, putUL (takes a byte array, offset, and a value to put there in little-endian format)
hexArr (converts a byte array or portion thereof into a hex string)
hexToArr (converts a hex string to a byte array)
Zap(of T as iDisposable) (takes a byref iDisposable; if not Nothing, disposes it and sets it to Nothing)
Many of those are only useful when fiddling with binary data, but none of them is really domain-specific. Maybe the first six could go in a BinaryHelpers module, but I'm not sure where Zap should go other than in a misc utilities class.
Utility classes aren't bad, in and of themselves. They can be (mis|ab|over)used at times, but they do have their place. If you have utility methods for types you own, consider moving the static methods to the appropriate types. Or creating extension methods.
Do try to avoid a monolithic utilities class - they may be static methods, but they will have poor cohesion. Break up a large set of unrelated functions into smaller groupings of related functionality, much like you would your "normal" classes. Name them *Helper or *Utils, or whatever your preference is. But be consistent, and group them together, perhaps in a folder within a project.
When utility classes are broken up as described, you can create methods for working with specific types - primitives or classes, such as arrays, strings, dates and times, and so on. Admittedly, these wouldn't belong anywhere else, so a utility class is the place to go.
Personally, I often find such a class handy - even if only in the short term. That said, I try not to share them between projects. I would not keep a global version, but write one specific to each project - otherwise you're incorporating dead-weight which may cause issues for security or architecture.
What I do for my personal projects is keep a misc library but rather than adding a reference in my projects, I paste the relevant bits of code in to the relevant places. It's technically duplicaintg it, but not within a single solution and thats the important thing. However I don't think this would work on a larger scale, too messy.
I generally don't have a problem with them, although, like all things, they can be abused:
They grow wildly large, so that most problems that use the class don't use 99% of the functions.
They grow wildly large, so that 90% of the functions aren't used by any program still in use.
Often they are a dumping ground for functions which are specific to one domain. They should be pared off to a similar class use just by program in that domain. Often, these function would be better off incorporated into proper classes.
I used to have, in every project, a module called MiscStuffAndJunk. It was a place to hold everything that didn't have a clear place to go, either because the functionality was a one-off, or because I didn't want to change my focus, so as to do a proper design for a function that was needed by but extraneous away from what I was currently concentrating on.
Still, it these modules are clearly in violation of OO design principles.
So nowadays, I name the module StuffIHaventRefactoredYet, and all is right with the world.
Depending on what your static utility functions actually do and return, it may be cause problems unit testing. I have come across a method in a class that calls a static function on a static class that return things I do not want in my unit test, rendering the whole method untestable...

What is the point of defining Access Modifiers?

I understand the differences between them (at least in C#). I know the effects they have on the elements to which they are assigned. What I don't understand is why it is important to implement them - why not have everything Public?
The material I read on the subject usually goes on about how classes and methods shouldn't have unnecessary access to others, but I've yet to come across an example of why/how that would be a bad thing. It seems like a security thing, but I'm the programmer; I create the methods and define what they will (or will not) do. Why would I spend all the effort to write a function which tried to change a variable it shouldn't, or tried to read information in another class, if that would be bad?
I apologize if this is a dumb question. It's just something I ran into on the first articles I ever read on OOP, and I've never felt like it really clicked.
I'm the programmer is a correct assumption only if you're the only programmer.
In many cases, other programmers work with the first programmer's code. They use it in ways he didn't intend by fiddling with the values of fields they shouldn't, and they create a hack that works, but breaks when the producer of the original code changes it.
OOP is about creating libraries with well-defined contracts. If all your variables are public and accessible to others, then the "contract" theoretically includes every field in the object (and its sub-objects), so it becomes much harder to build a new, different implementation that still honors the original contract.
Also, the more "moving parts" of your object are exposed, the easier it is for a user of your class to manipulate it incorrectly.
You probably don't need this, but here's an example I consider amusing:
Say you sell a car with no hood over the engine compartment. Come nighttime, the driver turns on the lights. He gets to his destination, gets out of the car and then remembers he left the light on. He's too lazy to unlock the car's door, so he pulls the wire to the lights out from where it's attached to the battery. This works fine - the light is out. However, because he didn't use the intended mechanism, he finds himself with a problem next time he's driving in the dark.
Living in the USA (go ahead, downvote me!), he refuses to take responsibility for his incorrect use of the car's innards, and sues you, the manufacturer for creating a product that's unsafe to drive in the dark because the lights can't be reliably turned on after having been turned off.
This is why all cars have hoods over their engine compartments :)
A more serious example: You create a Fraction class, with a numerator and denominator field and a bunch of methods to manipulate fractions. Your constructor doesn't let its caller create a fraction with a 0 denominator, but since your fields are public, it's easy for a user to set the denominator of an existing (valid) fraction to 0, and hilarity ensues.
First, nothing in the language forces you to use access modifiers - you are free to make everything public in your class if you wish. However, there are some compelling reasons for using them. Here's my perspective.
Hiding the internals of how your class operates allows you to protect that class from unintended uses. While you may be the creator of the class, in many cases you will not be the only consumer - or even maintainer. Hiding internal state protects the class for people who may not understand its workings as well as you. Making everything public creates the temptation to "tweak" the internal state or internal behavior when the class isn't acting the way you may want - rather than actually correcting the public interface of internal implementation. This is the road to ruin.
Hiding internals helps to de-clutter the namespace, and allows tools like Intellisense to display only the relevant and meaningful methods/properties/fields. Don't discount tools like Intellisense - they are a powerful means for developers to quickly identify what they can do with your class.
Hiding internals allows you to structure an interface appropriate for the problem the class is solving. Exposing all of the internals (which often substantially outnumber the exposed interface) makes it hard to later understand what the class is trying to solve.
Hiding internals allows you to focus your testing on the appropriate portion - the public interface. When all methods/properties of a class are public, the number of permutations you must potentially test increases significantly - since any particular call path becomes possible.
Hiding internals helps you control (enforce) the call paths through your class. This makes it easier to ensure that your consumers understand what your class can be asked to do - and when. Typically, there are only a few paths through your code that are meaningful and useful. Allowing a consumer to take any path makes it more likely that they will not get meaningful results - and will interpret that as your code being buggy. Limiting how your consumers can use your class actually frees them to use it correctly.
Hiding the internal implementation frees you to change it with the knowledge that it will not adversely impact consumers of your class - so long as your public interface remains unchanged. If you decide to use a dictionary rather than a list internally - no one should care. But if you made all the internals of your class available, someone could write code that depends on the fact that your internally use a list. Imagine having to change all of the consumers when you want to change such choices about your implementation. The golden rule is: consumers of a class should not care how the class does what it does.
It is primarily a hiding and sharing thing. You may produce and use all your own code, but other people provide libraries, etc. to be used more widely.
Making things non-public allows you to explicitly define the external interface of your class. The non-public stuff is not part of the external interface, which means you can change anything you want internally without affecting anyone using the external interface,
You only want to expose the API and keep everything else hidden. Why?
Ok lets assume you want to make an awesome Matrix library so you make
class Matrix {
public Object[][] data //data your matrix storages
...
public Object[] getRow()
}
By default any other programmer that use your library will want to maximize the speed of his program by tapping into the underlying structure.
//Someone else's function
Object one() {data[0][0]}
Now, you discover that using list to emulate the matrix will increase performance so you change data from
Object[][] data => Object[] data
causes Object one() to break. In other words by changing your implementation you broke backward compatibility :-(
By encapsulating you divide internal implementation from external interface (achieved with a private modifier).
That way you can change implementation as much as possible without breaking backward compatibility :D Profit!!!
Of course if you are the only programmer that is ever going to modify or use that class you might as well as keep it public.
Note: There are other major benefits for encapsulating your stuff, this is just one of many. See Encapsulation for more details
I think the best reason for this is to provide layers of abstraction on your code.
As your application grows, you will need to have your objects interacting with other objects. Having publicly modifiable fields makes it harder to wrap your head around your entire application.
Limiting what you make public on your classes makes it easier to abstract your design so you can understand each layer of your code.
For some classes, it may seem ridiculous to have private members, with a bunch of methods that just set and get those values. The reason for it is that let's say you have a class where the members are public and directly accessible:
class A
{
public int i;
....
}
And now you go on using that in a bunch of code you wrote. Now after writing a bunch of code that directly accesses i and now you realize that i should have some constraints on it, like i should always be >= 0 and less than 100 (for argument's sake).
Now, you could go through all of your code where you used i and check for this constraint, but you could just add a public setI method that would do it for you:
class A
{
private int i;
public int I
{
get {return i;}
set
{
if (value >= 0 && value < 100)
i = value;
else
throw some exception...
}
}
}
This hides all of that error checking. While the example is trite, situations like these come up quite often.
It is not related to security at all.
Access modifers and scope are all about structure, layers, organization, and communication.
If you are the only programmer, it is probably fine until you have so much code even you can't remember. At that point, it's just like a team environment - the access modifiers and the structure of the code guide you to stay within the architecture.

What features do you wish were in common languages? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
What features do you wish were in common languages? More precisely, I mean features which generally don't exist at all but would be nice to see, rather than, "I wish dynamic typing was popular."
I've often thought that "observable" would make a great field modifier (like public, private, static, etc.)
GameState {
observable int CurrentScore;
}
Then, other classes could declare an observer of that property:
ScoreDisplay {
observe GameState.CurrentScore(int oldValue, int newValue) {
...do stuff...
}
}
The compiler would wrap all access to the CurrentScore property with notification code, and observers would be notified immediately upon the value's modification.
Sure you can do the same thing in most programming languages with event listeners and property change handlers, but it's a huge pain in the ass and requires a lot of piecemeal plumbing, especially if you're not the author of the class whose values you want to observe. In which case, you usually have to write a wrapper subclass, delegating all operations to the original object and sending change events from mutator methods. Why can't the compiler generate all that dumb boilerplate code?
I guess the most obvious answer is Lisp-like macros. Being able to process your code with your code is wonderfully "meta" and allows some pretty impressive features to be developed from (almost) scratch.
A close second is double or multiple-dispatch in languages like C++. I would love it if polymorphism could extend to the parameters of a virtual function.
I'd love for more languages to have a type system like Haskell. Haskell utilizes a really awesome type inference system, so you almost never have to declare types, yet it's still a strongly typed language.
I also really like the way you declare new types in Haskell. I think it's a lot nicer than, e.g., object-oriented systems. For example, to declare a binary tree in Haskell, I could do something like:
data Tree a = Node a (Tree a) (Tree a) | Nothing
So the composite data types are more like algebraic types than objects. I think it makes reasoning about the program a lot easier.
Plus, mixing in type classes is a lot nicer. A type class is just a set of classes that a type implements -- sort of like an interface in a language like Java, but more like a mixin in a language like Ruby, I guess. It's kind of cool.
Ideally, I'd like to see a language like Python, but with data types and type classes like Haskell instead of objects.
I'm a big fan of closures / anonymous functions.
my $y = "world";
my $x = sub { print #_ , $y };
&$x( 'hello' ); #helloworld
and
my $adder = sub {
my $reg = $_[0];
my $result = {};
return sub { return $reg + $_[0]; }
};
print $adder->(4)->(3);
I just wish they were more commonplace.
Things from Lisp I miss in other languages:
Multiple return values
required, keyword, optional, and rest parameters (freely mixable) for functions
functions as first class objects (becoming more common nowadays)
tail call optimization
macros that operate on the language, not on the text
consistent syntax
To start things off, I wish the standard for strings was to use a prefix if you wanted to use escape codes, rather than their use being the default. E.g. in C# you can prefix with # for a raw string. Similarly, Python has the r prefix. I'd rather use #/r when I don't want a raw string and need escape codes.
More powerful templates that are actually designed to be used for metaprogramming, rather than C++ templates that are really designed for relatively simple generics and are Turing-complete almost by accident. The D programming language has these, but it's not very mainstream yet.
immutable keyword. Yes, you can make immutable objects, but that's lot pain in most of the languages.
class JustAClass
{
private int readonly id;
private MyClass readonly obj;
public MyClass
{
get
{
return obj;
}
}
}
Apparently it seems JustAClass is an immutable class. But that's not the case. Because another object hold the same reference, can modify the obj object.
So it's better to introduce new immutable keyword. When immutable is used that object will be treated immutable.
I like some of the array manipulation capabilities found in the Ruby language. I wish we had some of that built into .Net and Java. Of course, you can always create such a library, but it would be nice not to have to do that!
Also, static indexers are awesome when you need them.
Type inference. It's slowly making it's way into the mainstream languages but it's still not good enough. F# is the gold standard here
I wish there was a self-reversing assignment operator, which rolled back when out of scope. This would be to replace:
type datafoobak = item.datafoobak
item.datafoobak = 'tootle'
item.handledata()
item.datafoobak = datafoobak
with this
item.datafoobar #=# 'tootle'
item.handledata()
One could explicitely rollback such changes, but they'd roll back once out of scope, too. This kind of feature would be a bit error prone, maybe, but it would also make for much cleaner code in some cases. Some sort of shallow clone might be a more effective way to do this:
itemclone = item.shallowclone
itemclone.datafoobak='tootle'
itemclone.handledata()
However, shallow clones might have issues if their functions modified their internal data...though so would reversible assignments.
I'd like to see single-method and single-operator interfaces:
interface Addable<T> --> HasOperator( T = T + T)
interface Splittable<T> --> HasMethod( T[] = T.Split(T) )
...or something like that...
I envision it as being a typesafe implementation of duck-typing. The interfaces wouldn't be guarantees provided by the original class author. They'd be assertions made by a consumer of a third-party API, to provide limited type-safety in cases where the original authors hadn't anticipated.
(A good example of this in practice would be the INumeric interface that people have been clamboring for in C# since the dawn of time.)
In a duck-typed language like Ruby, you can call any method you want, and you won't know until runtime whether the operation is supported, because the method might not exist.
I'd like to be able to make small guarantees about type safety, so that I can polymorphically call methods on heterogeneous objects, as long as all of those objects have the method or operator that I want to invoke.
And I should be able to verify the existence of the methods/operators I want to call at compile time. Waiting until runtime is for suckers :o)
Lisp style macros.
Multiple dispatch.
Tail call optimization.
First class continuations.
Call me silly, but I don't think every feature belongs in every language. It's the "jack of all trades, master of none" syndrome. I like having a variety of tools available, each one of which is the best it can be for a particular task.
Functional functions, like map, flatMap, foldLeft, foldRight, and so on. Type system like scala (builder-safety). Making the compilers remove high-level libraries at compile time, while still having them if you run in "interpreted" or "less-compiled" mode (speed... sometimes you need it).
There are several good answers here, but i will add some:
1 - The ability to get a string representation for the current and caller code, so that i could output a variable name and its value easily, or print the name of the current class, function or a stack trace at any time.
2 - Pipes would be nice too. This feature is common in shells, but uncommon in other types of languages.
3 - The ability to delegate any number of methods to another class easily. This looks like inheritance, but even in the presence of inheritance, once in a while we need some kind of wrapper or stub which cannot be implemented as a child class, and forwarding all methods requires a lot of boilerplate code.
I'd like a language that was much more restrictive and was designed around producing good, maintainable code without any trickiness. Also, it should be designed to give the compiler the ability to check as much as possible at compile time.
Start with a newish VM based heavily OO language.
Remove complexities like Operator Overloading and multiple inheritance if they exist.
Force all non-final variables to Private.
Members should default to "Final" but should have a "Variable" tag to override it. (This may require built-in support for the builder pattern to be fully effective).
Variables should not allow a "Null" value by default, but variables and parameters should have a "nullable" tag that indicates that null is acceptable for that variable.
It would also be nice to be able to avoid some common questionable patterns:
Some built-in way to simplify IOC/DI to eliminate singletons,
Java--eliminate checked exceptions so people stop putting in empty catches.
Finally focus on code readability:
Named Parameters
Remove the ability to create methods more than, say, 100 lines long.
Add some complexity analysis to help detect complicated methods and classes.
I'm sure I haven't named 1/10 of the items possible, but basically I'm talking about something that compiles to the same bytecode as C# or Java, but is so restrictive that a programmer can hardly help but write good code.
And yes, I know there are lint-type tools that will do some of this, but I've never seen them on any project I've worked on (and they wouldn't physically run on the code I'm working on now, for instance) so they aren't being very helpful, and I would love to see a compile actually fail when you type in a 101 line method...

Is Inheritance really needed?

I must confess I'm somewhat of an OOP skeptic. Bad pedagogical and laboral experiences with object orientation didn't help. So I converted into a fervent believer in Visual Basic (the classic one!).
Then one day I found out C++ had changed and now had the STL and templates. I really liked that! Made the language useful. Then another day MS decided to apply facial surgery to VB, and I really hated the end result for the gratuitous changes (using "end while" instead of "wend" will make me into a better developer? Why not drop "next" for "end for", too? Why force the getter alongside the setter? Etc.) plus so much Java features which I found useless (inheritance, for instance, and the concept of a hierarchical framework).
And now, several years afterwards, I find myself asking this philosophical question: Is inheritance really needed?
The gang-of-four say we should favor object composition over inheritance. And after thinking of it, I cannot find something you can do with inheritance you cannot do with object aggregation plus interfaces. So I'm wondering, why do we even have it in the first place?
Any ideas? I'd love to see an example of where inheritance would be definitely needed, or where using inheritance instead of composition+interfaces can lead to a simpler and easier to modify design. In former jobs I've found if you need to change the base class, you need to modify also almost all the derived classes for they depended on the behaviour of parent. And if you make the base class' methods virtual... then not much code sharing takes place :(
Else, when I finally create my own programming language (a long unfulfilled desire I've found most developers share), I'd see no point in adding inheritance to it...
Really really short answer: No. Inheritance is not needed because only byte code is truly needed. But obviously, byte code or assemble is not a practically way to write your program. OOP is not the only paradigm for programming. But, I digress.
I went to college for computer science in the early 2000s when inheritance (is a), compositions (has a), and interfaces (does a) were taught on an equal footing. Because of this, I use very little inheritance because it is often suited better by composition. This was stressed because many of the professors had seen bad code (along with what you have described) because of abuse of inheritance.
Regardless of creating a language with or without inheritances, can you create a programming language which prevents bad habits and bad design decisions?
I think asking for situations where inheritance is really needed is missing the point a bit. You can fake inheritance by using an interface and some composition. This doesnt mean inheritance is useless. You can do anything you did in VB6 in assembly code with some extra typing, that doesn't mean VB6 was useless.
I usually just start using an interface. Sometimes I notice I actually want to inherit behaviour. That usually means I need a base class. It's that simple.
Inheritance defines an "Is-A" relationship.
class Point( object ):
# some set of features: attributes, methods, etc.
class PointWithMass( Point ):
# An additional feature: mass.
Above, I've used inheritance to formally declare that PointWithMass is a Point.
There are several ways to handle object P1 being a PointWithMass as well as Point. Here are two.
Have a reference from PointWithMass object p1 to some Point object p1-friend. The p1-friend has the Point attributes. When p1 needs to engage in Point-like behavior, it needs to delegate the work to its friend.
Rely on language inheritance to assure that all features of Point are also applicable to my PointWithMass object, p1. When p1 needs to engage in Point-like behavior, it already is a Point object and can just do what needs to be done.
I'd rather not manage the extra objects floating around to assure that all superclass features are part of a subclass object. I'd rather have inheritance to be sure that each subclass is an instance of it's own class, plus is an instance of all superclasses, too.
Edit.
For statically-typed languages, there's a bonus. When I rely on the language to handle this, a PointWithMass can be used anywhere a Point was expected.
For really obscure abuse of inheritance, read about C++'s strange "composition through private inheritance" quagmire. See Any sensible examples of creating inheritance without creating subtyping relations? for some further discussion on this. It conflates inheritance and composition; it doesn't seem to add clarity or precision to the resulting code; it only applies to C++.
The GoF (and many others) recommend that you only favor composition over inheritance. If you have a class with a very large API, and you only want to add a very small number of methods to it, leaving the base implementation alone, I would find it inappropriate to use composition. You'd have to re-implement all of the public methods of the encapsulated class to just return their value. This is a waste of time (programmer and CPU) when you can just inherit all of this behavior, and spend your time concentrating on new methods.
So, to answer your question, no you don't absolutely need inheritance. There are, however, many situations where it's the right design choice.
The problem with inheritance is that it conflates the issue of sub-typing (asserting an is-a relationship) and code reuse (e.g., private inheritance is for reuse only).
So, no it's an overloaded word that we don't need. I'd prefer sub-typing (using the 'implements' keyword) and import (kinda like Ruby does it in class definitions)
Inheritance lets me push off a whole bunch of bookkeeping onto the compiler because it gives me polymorphic behavior for object hierarchies that I would otherwise have to create and maintain myself. Regardless of how good a silver bullet OOP is, there will always be instances where you want to employ a certain type of behavior because it just makes sense to do. And ultimately, that's the point of OOP: it makes a certain class of problems much easier to solve.
The downsides of composition is that it may disguise the relatedness of elements and it may be harder for others to understand. With,say, a 2D Point class and the desire to extend it to higher dimensions, you would presumably have to add (at least) Z getter/setter, modify getDistance(), and maybe add a getVolume() method. So you have the Objects 101 elements: related state and behavior.
A developer with a compositional mindset would presumably have defined a getDistance(x, y) -> double method and would now define a getDistance(x, y, z) -> double method. Or, thinking generally, they might define a getDistance(lambdaGeneratingACoordinateForEveryAxis()) -> double method. Then they would probably write createTwoDimensionalPoint() and createThreeDimensionalPoint() factory methods (or perhaps createNDimensionalPoint(n) ) that would stitch together the various state and behavior.
A developer with an OO mindset would use inheritance. Same amount of complexity in the implementation of domain characteristics, less complexity in terms of initializing the object (constructor takes care of it vs. a Factory method), but not as flexible in terms of what can be initialized.
Now think about it from a comprehensibility / readability standpoint. To understand the composition, one has a large number of functions that are composed programmatically inside another function. So there's little in terms of static code 'structure' (files and keywords and so forth) that makes the relatedness of Z and distance() jump out. In the OO world, you have a great big flashing red light telling you the hierarchy. Additionally, you have an essentially universal vocabulary to discuss structure, widely known graphical notations, a natural hierarchy (at least for single inheritance), etc.
Now, on the other hand, a well-named and constructed Factory method will often make explicit more of the sometimes-obscure relationships between state and behavior, since a compositional mindset facilitates functional code (that is, code that passes state via parameters, not via this ).
In a professional environment with experienced developers, the flexibility of composition generally trumps its more abstract nature. However, one should never discount the importance of comprehensibility, especially in teams that have varying degrees of experience and/or high levels of turnover.
Inheritance is an implementation decision. Interfaces almost always represent a better design, and should usually be used in an external API.
Why write a lot of boilerplate code forwarding method calls to a composed member object when the compiler will do it for you with inheritance?
This answer to another question summarises my thinking pretty well.
Does anyone else remember all of the OO-purists going ballistic over the COM implementation of "containment" instead of "inheritance?" It achieved essentially the same thing, but with a different kind of implementation. This reminds me of your question.
I strictly try to avoid religious wars in software development. ("vi" OR "emacs" ... when everybody knows its "vi"!) I think they are a sign of small minds. Comp Sci Professors can afford to sit around and debate these things. I'm working in the real world and could care less. All of this stuff are simply attempts at giving useful solutions to real problems. If they work, people will use them. The fact that OO languages and tools have been commercially available on a wide scale for going on 20 years is a pretty good bet that they are useful to a lot of people.
There are a lot of features in a programming language that are not really needed. But they are there for a variety of reasons that all basically boil down to reusability and maintainability.
All a business cares about is producing (quality of course) cheaply and quickly.
As a developer you help do this is by becoming more efficient and productive. So you need to make sure the code you write is easily reusable and maintainable.
And, among other things, this is what inheritance gives you - the ability to reuse without reinventing the wheel, as well as the ability to easily maintain your base object without having to perform maintenance on all similar objects.
There's lots of useful usages of inheritance, and probably just as many which are less useful. One of the useful ones is the stream class.
You have a method that should be able stream data. By using the stream base class as input to the method you ensure that your method can be used to write to many kinds of streams without change. To the file system, over the network, with compression, etc.
No.
for me, OOP is mostly about encapsulation of state and behavior and polymorphism.
and that is. but if you want static type checking, you'll need some way to group different types, so the compiler can check while still allowing you to use new types in place of another, related type. creating a hierarchy of types lets you use the same concept (classes) for types and for groups of types, so it's the most widely used form.
but there are other ways, i think the most general would be duck typing, and closely related, prototype-based OOP (which isn't inheritance in fact, but it's usually called prototype-based inheritance).
Depends on your definition of "needed". No, there is nothing that is impossible to do without inheritance, although the alternative may require more verbose code, or a major rewrite of your application.
But there are definitely cases where inheritance is useful. As you say, composition plus interfaces together cover almost all cases, but what if I want to supply a default behavior? An interface can't do that. A base class can. Sometimes, what you want to do is really just override individual methods. Not reimplement the class from scratch (as with an interface), but just change one aspect of it. or you may not want all members of the class to be overridable. Perhaps you have only one or two member methods you want the user to override, and the rest, which calls these (and performs validation and other important tasks before and after the user-overridden methods) are specified once and for all in the base class, and can not be overridden.
Inheritance is often used as a crutch by people who are too obsessed with Java's narrow definition of (and obsession with) OOP though, and in most cases I agree, it's the wrong solution, as if the deeper your class hierarchy, the better your software.
Inheritance is a good thing when the subclass really is the same kind of object as the superclass. E.g. if you're implementing the Active Record pattern, you're attempting to map a class to a table in the database, and instances of the class to a row in the database. Consequently, it is highly likely that your Active Record classes will share a common interface and implementation of methods like: what is the primary key, whether the current instance is persisted, saving the current instance, validating the current instance, executing callbacks upon validation and/or saving, deleting the current instance, running a SQL query, returning the name of the table that the class maps to, etc.
It also seems from how you phrase your question that you're assuming that inheritance is single but not multiple. If we need multiple inheritance, then we have to use interfaces plus composition to pull off the job. To put a fine point about it, Java assumes that implementation inheritance is singular and interface inheritance can be multiple. One need not go this route. E.g. C++ and Ruby permit multiple inheritance for your implementation and your interface. That said, one should use multiple inheritance with caution (i.e. keep your abstract classes virtual and/or stateless).
That said, as you note, there are too many real-life class hierarchies where the subclasses inherit from the superclass out of convenience rather than bearing a true is-a relationship. So it's unsurprising that a change in the superclass will have side-effects on the subclasses.
Not needed, but usefull.
Each language has got its own methods to write less code. OOP sometimes gets convoluted, but I think that is the responsability of the developers, the OOP platform is usefull and sharp when it is well used.
I agree with everyone else about the necessary/useful distinction.
The reason I like OOP is because it lets me write code that's cleaner and more logically organized. One of the biggest benefits comes from the ability to "factor-up" logic that's common to a number of classes. I could give you concrete examples where OOP has seriously reduced the complexity of my code, but that would be boring for you.
Suffice it to say, I heart OOP.
Absolutely needed? no,
But think of lamps. You can create a new lamp from scratch each time you make one, or you can take properties from the original lamp and make all sorts of new styles of lamp that have the same properties as the original, each with their own style.
Or you can make a new lamp from scratch or tell people to look at it a certain way to see the light, or , or, or
Not required, but nice :)
Thanks to all for your answers. I maintain my position that, strictly speaking, inheritance isn't needed, though I believe I found a new appreciation for this feature.
Something else: In my job experience, I have found inheritance leads to simpler, clearer designs when it's brought in late in the project, after it's noticed a lot of the classes have much commonality and you create a base class. In projects where a grand-schema was created from the very beginning, with a lot of classes in an inheritance hierarchy, refactoring is usually painful and dificult.
Seeing some answers mentioning something similar makes me wonder if this might not be exactly how inheritance's supposed to be used: ex post facto. Reminds me of Stepanov's quote: "you don't start with axioms, you end up with axioms after you have a bunch of related proofs". He's a mathematician, so he ought to know something.
The biggest problem with interfaces is that they cannot be changed. Make an interface public, then change it (add a new method to it) and break million applications all around the world, because they have implemented your interface, but not the new method. The app may not even start, a VM may refuse to load it.
Use a base class (not abstract) other programmers can inherit from (and override methods as needed); then add a method to it. Every app using your class will still work, this method just won't be overridden by anyone, but since you provide a base implementation, this one will be used and it may work just fine for all subclasses of your class... it may also cause strange behavior because sometimes overriding it would have been necessary, okay, might be the case, but at least all those million apps in the world will still start up!
I rather have my Java application still running after updating the JDK from 1.6 to 1.7 with some minor bugs (that can be fixed over time) than not having it running it at all (forcing an immediate fix or it will be useless to people).
//I found this QA very useful. Many have answered this right. But i wanted to add...
1: Ability to define abstract interface - E.g., for plugin developers. Of course, you can use function pointers, but this is better and simpler.
2: Inheritance helps model types very close to their actual relationships. Sometimes a lot of errors get caught at compile time, because you have the right type hierarchy. For instance, shape <-- triangle (lets say there is a lot of code to be reused). You might want to compose triangle with a shape object, but shape is an incomplete type. Inserting dummy implementations like double getArea() {return -1;} will do, but you are opening up room for error. That return -1 can get executed some day!
3: void func(B* b); ... func(new D()); Implicit type conversion gives a great notational convenience since Derived is Base. I remember having read Straustrup saying that he wanted to make classes first class citizens just like fundamental data types (hence overloading operators etc). Implicit conversion from Derived to Base, behaves just like an implicit conversion from a data type to broader compatible one (short to int).
Inheritance and Composition have their own pros and cons.
Refer to this related SE question on pros of inheritance and cons of composition.
Prefer composition over inheritance?
Have a look at the example in this documentation link:
The example shows different use cases of overriding by using inheritance as a mean to achieve polymorphism.
In the following, inheritance is used to present a particular property for all of several specific incarnations of the same type thing. In this case, the GeneralPresenation has a properties that are relevant to all "presentation" (the data passed to an MVC view). The Master Page is the only thing using it and expects a GeneralPresentation, though the specific views expect more info, tailored to their needs.
public abstract class GeneralPresentation
{
public GeneralPresentation()
{
MenuPages = new List<Page>();
}
public IEnumerable<Page> MenuPages { get; set; }
public string Title { get; set; }
}
public class IndexPresentation : GeneralPresentation
{
public IndexPresentation() { IndexPage = new Page(); }
public Page IndexPage { get; set; }
}
public class InsertPresentation : GeneralPresentation
{
public InsertPresentation() {
InsertPage = new Page();
ValidationInfo = new PageValidationInfo();
}
public PageValidationInfo ValidationInfo { get; set; }
public Page InsertPage { get; set; }
}