audio sequencer with swing (shuffle) Obj-C - objective-c

I'm working on a drum computer with sequencer for the iPad. The drum computer is working just fine and writing the sequencer wasn't that much of a problem either. However, the sequencer is currently only capable of a straight beat (each step has equal duration). I would like to add a swing (or shuffle as some seem to call it) option, but I'm having trouble figuring out how.
'Swing' according to Wikipedia
Straight beat (midi, low volume)
Beat with Swing (midi, low volume)
If I understand correctly, swing is pretty much achieved by offsetting the eights notes between the 1-2-3-4 with a configurable amount. So instead of
1 + 2 + 3 + 4 +
it becomes something like
1 +2 +3 +4 +
The linked midi files illustrate this better...
However, the sequencer works with 1/16th or even 1/32th steps, so if the 2/8th (4/16th) note is offset, how would that affect the 5/16th note.
I'm probably not approaching this the correct way. Any pointers?
Sequencer code
This is the basics of how I implemented the sequencer. I figured altering the stepDuration at certain points should give me the swing effect I want, but how?
#define STEPS_PER_BAR 32
// thread
- (void) sequencerLoop
{
while(isRunning)
{
NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
// prepare for step
currentStep++;
if(currentStep >= STEPS_PER_BAR * activePatternNumBars)
currentStep = 0;
// handle the step/tick
...
//calculate the time to sleep until the next step
NSTimeInterval stepDuration = (60.0f / (float)bpm) / (STEPS_PER_BAR / 4);
nextStepStartTime = nextStepStartTime + stepDuration;
NSTimeInterval now = [NSDate timeIntervalSinceReferenceDate];
// sleep if there is time left
if(nextStepStartTime > now)
[NSThread sleepUntilDate:[NSDate dateWithTimeIntervalSinceReferenceDate:nextStepStartTime]];
else {
NSLog(#"WARNING: sequencer loop is lagging behind");
}
[pool release];
}
}
Edit: added code

I'm not familiar with the sequencer on iOS, but usually sequencers subdivide steps or beats into "ticks", so the way to do this would be to shift the notes that don't fall right on a beat back by a few "ticks" durring playback. So if the user programmed:
1 + 2 + 3 + 4 +
Instead of playing it back like that, you shift any notes falling on the "and" back by however many ticks (depending on exactly where it falls, how much "swing" was used, and how many "ticks" per beat)
1 + 2 + 3 + 4 +
Sorry if that's not much help, or if I'm not much more than restating the question, but the point is you should be able to do this, probably using something called "ticks". You may need to access another layer of the API to do this.
Update:
So say there are 32 ticks per beat. That means the "+" in the diagram above is tick # 16 -- that's what needs to be shifted. (that's not really a lot of resolution, so having more ticks is better).
Lets call the amount we move it, the "swing factor", s. For no swing, s = 1, for "infinite" swing, s=2. You probably want to use a value like 1.1 or 1.2. For simplicity, we'll use linear interpolation to determine the new position. (As a side note, for more on linear interpolation and how it pertains to audio, I wrote a little tutorial) we need to break the time before and after 16 into two sections, since the time before is going to be stretched and the time after is going to be compressed.
if( tick <= 16 )
tick *= s; //stretch
else
tick = (2-s)*tick + 32*(s-1) //compress
How you deal with rounding is up to you. Obviously, you'll want to do this on playback only and not store the new values, since you won't be able to recover the original value exactly due to rounding.

Change the number of steps to 12 instead of 16. Then each beat has 3 steps instead of 4. Triplets instead of 16th notes. Put sounds on the first and third triplet and it swings. Musicians playing swing use the second triplet also.
Offsetting the notes to create a shuffle does not give you access to the middle triplet.

Related

Confusion with writing a game loop

I'm working on a 2D video game framework, and I've never written a game loop before. Most frameworks I've ever looked in to seem to implement both a draw and update methods.
For my project I implemented a loop that calls these 2 methods. I noticed with other frameworks, these methods don't always get called alternating. Some frameworks will have update run way more than draw does. Also, most of these types of frameworks will run at 60FPS. I figure I'll need some sort of sleep in here.
My question is, what is the best method for implementing this type of loop? Do I call draw then update, or vice versa? In my case, I'm writing a wrapper around SDL2, so maybe that library requires something to be setup in a certain way?
Here's some "pseudo" code I'm thinking of for the implementation.
loop do
clear_screen
draw
update
sleep(16.milliseconds)
break if window_is_closed
end
Though my project is being written in Crystal-Lang, I'm more looking for a general concept that could be applied to any language.
It depends what you want to achieve. Some games prefer the game logic to run more frequently than the frame rate (I believe Source games do this), for some games you may want the game logic to run less frequently (the only example of this I can think of is the servers of some multiplayer games, quite famously Overwatch).
It's important to consider as well that this is a question of resolution, not speed. A game with logic rate 120 and frame rate 60 is not necessarily running at x2 speed, any time critical operations within the game logic should be done relative to the clock*, not the tic rate, or your game will literally go into slow motion if the frames take too long to render.
I would recommend writing a loop like this:
loop do
time_until_update = (update_interval + time_of_last_update) - current_time
time_until_draw = (draw_interval + time_of_last_draw) - current_time
work_done = false
# Update the game if it's been enough time
if time_until_update <= 0
update
time_of_last_update = current_time
work_done = true
end
# Draw the screen if it's been enough time
if time_until_draw <= 0
clear_screen
draw
time_of_last_draw = current_time
work_done = true
end
# Nothing to do, sleep for the smallest period
if work_done == false
smaller = time_until_update
if time_until_draw < smaller
smaller = time_until_draw
end
sleep_for(smaller)
end
# Leave, maybe
break if window_is_closed
end
You don't want to wait for 16ms every frame otherwise you might end up over-waiting if the frame takes a non-trivial amount of time to complete. The work_done variable is so that we know whether or not the intervals we calculated at the start of the loop are still valid, we may have done 5ms of work, which would throw our sleeping completely off so in that scenario we go back around and calculate fresh values.
* You may want to abstractify the clock, using the clock directly can have some weird effects, for example if you save the game and you save the last time you used a magical power as a clock time, it will instantly come off cooldown when you load the save, as that is now minutes, hours or even days in the past. Similar issues exist with the process being suspended by the operating system.

NSSpeechSynthesizer and track duration

This time I have a logic question. Hope someone of you could help me. Using the `NSSpeechSynthesizer' you can set the rate, i.e. 235 words per minute, 100 words per minute and so on...
I found that generally the average of words per minute is calculated using standardized word length of 5 characters per word, counting spaces and symbols too.
I need to automatically subdivide a long text in tracks with a pre-selected duration, let say 15 minutes per track.
How can we calculate the correct number of characters to pass for each 'split' to the speech engine?
My solution is as follow:
// duration is the number of minutes per track
numberOfWordsPerTrack = [rateSlider floatValue] * duration;
splits = [[NSMutableArray alloc] init];
finished = NO;
NSUInteger position = 0;
while( !finished ) {
NSRange range;
// the idea is: I take 5*numberOfWordsPerTrack characters
// until the text allows me to select them
range = NSMakeRange( position, 5*numberOfWordsPerTrack );
if( range.location+range.length > mainTextView.string.length ) {
// If there are not another full character track we get
// the tail of the remaining text
finished = YES;
range = NSMakeRange( position, mainTextView.string.length-position );
}
// Here we get the track and add it to the split list
if( range.location+range.length <= mainTextView.string.length ) {
currentSplit = [mainTextView.string substringWithRange:range];
[splits addObject:currentSplit];
}
position += range.length;
}
The problem with this solution is that the track duration is not correct. It is not quite far from the desired value, but it is not right. For example, using 235 words per minute with duration of 50 minutes, I have 40 minutes per track. If I set 120 minutes per track, I have 1h:39m per track... and so on...
Where do you think is the logic error?
EDIT AFTER JanX2 REPLY
Well, while randomly thinking I came to the following hypotesis Could you tell me what do you think about that before its implementation, because it is not a light change in my code
If I used the speechSynthesizer:willSpeakWord:ofString: delegate member I could test the .aiff file size frequently, i.e. before speaking the next word (real word, not standardized). Because we know the Hzs, bits and channels those file are created with by synthesizer and because we know they are not compressed, we could gain some guess about the current length of the track.
The biggest drawback of this solution could be che continuous disk access, that can highly degrade performance.
What do you think?
I can only guess, but the heuristic you use will include “silent” characters. Why not try an compensate for the measured error? You appear to have an error that is pretty much linear so you could factor that into your calculation:
40 / 50 = 80%
99 / 120 = 82.5%
So you have an error of about 17.5-20%. Just multiply the time you calculate above by 0.8 or 0.825 and you are getting closer. This is crude, but you are already using a heuristic.
BTW: You probably should consider using -enumerateSubstringsInRange:options:usingBlock: to achieve sentence granularity instead of arbitrary word splits.
Using “-speechSynthesizer:willSpeakWord:ofString:” causes bigger issues: in my experience it can be out of sync with the position in the file being written by several hundred ms up to several seconds. And speaking up the next word seems to have problems when used with the Nuance voices.

Faster calculation for large amounts of data / inner loop

So, I am programming a simple Mandelbrot renderer.
My inner loop (which is executed up to ~100,000,000 times each time I draw on screen) looks like this:
Complex position = {re,im};
Complex z = {0.0, 0.0};
uint32_t it = 0;
for (; it < maxIterations; it++)
{
//Square z
double old_re = z.re;
z.re = z.re*z.re - z.im*z.im;
z.im = 2*old_re*z.im;
//Add c
z.re = z.re+position.re;
z.im = z.im+position.im;
//Exit condition (mod(z) > 5)
if (sqrt(z.re*z.re + z.im*z.im) > 5.0f)
break;
}
//Color in the pixel according to value of 'it'
Just some very simple calculations. This takes between 0.5 and a couple of seconds, depending on the zoom and so on, but i need it to be much faster, to enable (almost) smooth scrolling.
My question is: What is my best bet to achieve the maximum possible calculation speed?
OpenCl to use the GPU? Coding it in assembly? Dividing the image into small pieces and dispatch the calculation of each piece on another thread? A combination of those?
Any help is appreciated!
I have written a Mandelbrot set renderer several times... and here are the things that you should keep in mind...
The things that take the longest are the ones that never escape and take all the iterations.
a. so you can make a region in the middle out of a few rectangles and check that first.
any starting point with a real and imaginary part between -1 and 1 will never escape.
you can cache points (20, or 30) in a rolling buffer and if you ever see a point in the buffer that you just calculated means that you have a cycle and it will never escape.
You can use a more general logic that doesn't require a square root... in that if any part is less than -2 or more than 2 it will race out of control and can be considered escaped.
But you can also break this up because each point is its own thing, so you can make a separate thread or gcd dispatch or whatever for each row or quadrant... it is a very easy problem to divide up and run in parallel.
In addition to the comments by #Grady Player you could start just by optimising your code
//Add c
z.re += position.re;
z.im += position.im;
//Exit condition (mod(z) > 5)
if (z.re*z.re + z.im*z.im > 25.0f)
break;
The compiler may optimise the first, but the second will certainly help.
Why are you coding your own complex rather than using complex.h

Variable Jump Height

I have been having great difficulty creating a jumping system whereby the user can tap the jump button for a small jump and hold it down for a higher jump.
I stumbled upon this topic:
https://gamedev.stackexchange.com/questions/13277/variable-height-jumping-in-side-scrollers
Which greatly helped me develop the following code:
PlayerMovementTimer = [NSTimer scheduledTimerWithTimeInterval:0.005 target:self selector:#selector(movePlayer) userInfo:nil repeats:YES];
[JumpButton addTarget:self action:#selector(jumpPlayer:) forControlEvents:UIControlEventTouchDown];
[JumpButton addTarget:self action:#selector(stopJump:) forControlEvents:UIControlEventTouchCancel | UIControlEventTouchUpInside | UIControlEventTouchDragExit];
- (void)movePlayer
{
CGFloat playerY = Player.center.y + PlayerYV;
if(playerY > 264) {
PlayerYV = 0;
playerY = 264;
}
if(playerY < 264) {
PlayerYV += 0.048f - PlayerYD;
}
if(HoldingJump && PlayerYV < 0 && PlayerYD + 0.0018f < 0.048f) {
PlayerYD += 0.0018f;
}
Player.center = CGPointMake(Player.center.x + PlayerXV, playerY);
}
- (IBAction)jumpPlayer:(id)sender
{
if(Player.center.y == 264) {
PlayerYD = 0;
PlayerYV = -2.25;
HoldingJump = true;
}
}
- (IBAction)stopJump:(id)sender
{
HoldingJump = false;
}
The code seems to work (some of the values need a bit of fine tuning but I haven't gotten round to that yet). The only problem is that the movement appears to be slightly jerky (even on the real device) and that when the player is at the top of the jump they accelerate really slowly and no values I put seem to be able to get the jump to look smooth like on Mario games.
Please take a look at the code and see if I am missing something obvious, or if there is a more efficient method of controlling movement than an NSTimer calling a void function. Also, is setting a UIImageView's position to a float value bad?
Thanks.
So there are quite a few things wrong here. First, yes, you should never be setting the origin of an ImageView or any other UI element to a coordinate position that is a fractional pixel. This causes sub-pixelling which will blur your image. To avoid this, all CGFloats should be rounded to the nearest whole number using roundf() or other similar rounding functions.
Another issue I can see is that you're setting Player.center. I hope for your sake that Player is not an ImageView cause you're going to be making your life harder. As mentioned above, when the origin of a frame is not set to a CGFloat that is a round number, you'll get sub-pixelling. When you use the center property, you can easily cause yourself to get on a bad origin value. For example, if I have a 11 by 11 image and set it's center to (11,11), the origin will get set to (5.5,5.5) and will cause sub-pixelling. Easy ways to avoid this is just do the math to place the origin correctly and make sure to round the CGFloats that you feed into it (or use CGRectIntegral on the frame before you set it).
A third issue here is that the timer is being called 0.005 seconds. Let's assume you want this game to run with 60 FPS. 60 FPS translates to about 0.0167 seconds. The timer is calling the method three times more often then it would need to even if you wanted 60 FPS and additionally, calling this method so often could be causing some of your jerky motion.
Now in terms of getting a "Mario" like jump, what you really need to do is look at getting a dedicated physics engine since if you're using the code above, you don't appear to have one. What a physics engine would do is it would apply a constant "gravity" which will help make the player jumps look and act more realistically. You would, when a player presses a button, apply an impulse up on the player character. The use of impulses would also simplify your work as you could apply impulses in different ways depending on how long they hold the button, etc. The code above is simply trying to get around this problem instead of addressing the real issue of you not having a physics engine.
Go investigate cocos2D and Box2D as a possible physics engine you could use. There are a wealth of resources on cocos2D+Box2D and there is a developer who even has made a tutorial on using cocos2D to create a Super Mario clone that should give you some basic understanding of how physics engines work: http://www.raywenderlich.com/15230/how-to-make-a-platform-game-like-super-mario-brothers-part-1

Bouncing ball not conforming to Conservation of Energy Rule

I am currently busy on writing a small ball physics engine for my programming course in Win32 API and c++. I have finished the GDI backbuffer renderer and the whole GUI (couple of more things to adjust) but i am very near to completion. The only big obstacles that last are ball to ball collision (but i can fix this on my own) but the biggest problem of them all is the bouncing of the balls. What happens is that i throw a ball and it really falls, but once it bounces it will bounce higher than the point were i released it??? the funny thing is, it only happens if below a certain height. This part is the physics code:
(If you need any more code or explanation, please ask, but i would greatly appreciate it if you guys could have a look at my code.)
#void RunPhysics(OPTIONS &o, vector<BALL*> &b)
{
UINT simspeed = o.iSimSpeed;
DOUBLE DT; //Delta T
BOOL bounce; //for playing sound
DT= 1/o.REFRESH;
for(UINT i=0; i<b.size(); i++)
{
for(UINT k=0; k<simspeed; k++)
{
bounce=false;
//handle the X bounce
if( b.at(i)->rBall.left <= 0 && b.at(i)->dVelocityX < 0 ) //ball bounces against the left wall
{
b.at(i)->dVelocityX = b.at(i)->dVelocityX * -1 * b.at(i)->dBounceCof;
bounce=true;
}
else if( b.at(i)->rBall.right >= SCREEN_WIDTH && b.at(i)->dVelocityX > 0) //ball bounces against the right wall
{
b.at(i)->dVelocityX = b.at(i)->dVelocityX * -1 * b.at(i)->dBounceCof;
bounce=true;
}
//handle the Y bounce
if( b.at(i)->rBall.bottom >= SCREEN_HEIGHT && b.at(i)->dVelocityY > 0 ) //ball bounces against the left wall
{
//damping of the ball
if(b.at(i)->dVelocityY < 2+o.dGravity/o.REFRESH)
{
b.at(i)->dVelocityY = 0;
}
//decrease the Velocity of the ball according to the bouncecof
b.at(i)->dVelocityY = b.at(i)->dVelocityY * -1*b.at(i)->dBounceCof;
b.at(i)->dVelocityX = b.at(i)->dVelocityX * b.at(i)->dBounceCof;
bounce=true;
}
//gravity
b.at(i)->dVelocityY += (o.dGravity)/o.REFRESH;
b.at(i)->pOrigin.y += b.at(i)->dVelocityY + (1/2)*o.dGravity/o.REFRESH*DT*METER;
//METER IS DEFINED GLOBALLY AS 100 which is the amount of pixels in a meter
b.at(i)->pOrigin.x += b.at(i)->dVelocityX/o.REFRESH*METER;
b.at(i)->UpdateRect();
}
}
return;
}
You are using the Euler method of integration. It is possible that your time step (DT) is too large. Also there seems to be a mistake on the row that updates the Y coordinate:
b.at(i)->pOrigin.y += b.at(i)->dVelocityY + (1/2)*o.dGravity/o.REFRESH*DT*METER;
You have already added the gravity to the velocity, so you don't need to add it to the position and you are not multiplying the velocity by DT. It should be like this:
b.at(i)->pOrigin.y += b.at(i)->dVelocityY * DT;
Furthermore there appears to be some confusion regarding the units (the way METER is used).
Okay, a few things here.
You have differing code paths for bounce against left wall and against right wall, but the code is the same. Combine those code paths, since the code is the same.
As to your basic problem: I suspect that your problem stems from the fact that you apply the gravity after you apply any damping forces / bounce forces.
When do you call RunPhysics? In a timer loop? This code is just an approximation and no exact calculation. In the short interval of delta t, the ball has already changed his position and velocity a litte bit which isn't considered in your algorithm and produces little mistakes. You'll have to compute the time until the ball hits the ground and predict the changes.
And the gravity is already included in the velocity, so don't add it twice here:
b.at(i)->pOrigin.y += b.at(i)->dVelocityY + (1/2)*o.dGravity/o.REFRESH*DT*METER;
By the way: Save b.at(i) in a temporary variable, so you don't have to recompute it in every line.
Ball* CurrentBall = b.at(i);
ANSWER!!ANSWER!!ANSWER!! but i forgot my other account so i can't flag it :-(
Thanks for all the great replies, it really helped me alot! The answers that you gave were indeed correct, a couple of my formulas were wrong and some code optimisation could be done, but none was really a solution to the problem. So i just sat down with a piece of paper and started calculation every value i got from my program by hand, took me like two hours :O But i did find the solution to my problem:
The problem is that as i update my velocity (whith corrected code) i get a decimal value, no problem at all. Later i increase the position in Y by adding the velocity times the Delta T, which is a verry small value. The result is a verry small value that needs to be added. The problem is now that if you draw a Elipse() in Win32 the point is a LONG and so all the decimal values are lost. That means that only after a verry long period, when the values velocity starts to come out of the decimal values something happens, and that alongside with that, the higher you drop the ball the better the results (one of my symptons) The solution to this problem was really simple, ad an extra DOUBLE value to my Ball class which contained the true position (including decimals) of my ball. During the RenderFrame() you just take the floor or ceiling value of the double to draw the elipse but for all the calculations you use the Double value. Once again thanks alot for all your replies, STACKOVERFLOW PEOPLE ROCK!!!
If your dBounceCof is > 1 then, yes your ball will bounce higher.
We do not have all the values to be able to reply to your question.
I don't think your equation for position is right:
b.at(i)->dVelocityY += (o.dGravity)/o.REFRESH;
This is v=v0+gt - that seems fine, although I'd write dGravity*DT instead of dGravity/REFRESH_FREQ.
b.at(i)->pOrigin.y += b.at(i)->dVelocityY + (1/2)*o.dGravity/o.REFRESH*DT*METER;
But this seems off: It is eqivalent to p = p0+v + 1/2gt^2.
You ought to multiply velocity * time to get the units right
You are scaling the gravity term by pixels/meter, but not the velocity term. So that ought to be multiplied by METER also
You have already accounted for the effect of gravity when you updated velocity, so you don't need to add the gravity term again.
Thanks for the quick replies!!! Sorry, i should have been more clear, the RunPhysics is beiing run after a PeekMessage. I have also added a frame limiter which makes sure that no more calculations are done per second than the refresh rate of the monitor. My dleta t is therefore 1 second devided by the refresh rate. Maybe my DT is actually too small to calculate, although it's a double value??? My cof of restitution is adjustable but starts at 0.9
You need to recompute your position on bounce, to make sure you bounce from the correct place on the wall.
I.e. resolve the exact point in time when the bounce occured, and calculate new velocity/position based on that direction change (partially into a "frame" of calculation) to make sure your ball does not move "beyond" the walls, more and more on each bounce.
W.r.t. time step, you might want to check out my answer here.
In a rigid body simulation, you need to run the integration up to the instant of collision, then adjust the velocities to avoid penetration at the collision, and then resume the integration. It's sort of an instantaneous kludge to cover the fact that rigid bodies are an approximation. (A real ball deforms during a collision. That's hard to model, and it's unnecessary for most purposes.)
You're combining these two steps (integrating the forces and resolving the collisions). For a simple simulation like you've shown, it's probably enough to skip the gravity bit on any iteration where you've handled a vertical bounce.
In a more advanced simulation, you'd split any interval (dt) that contains a collision at the actual instance of collision. Integrate up to the collision, then resolve the collision (by adjusting the velocity), and then integrate for the rest of the interval. But this looks like overkill for your situation.