SQL - Optimize date calculation for large table - sql

Can this query below be optimized?
select
max(date), sysdate - max(date)
from
table;
Query execution time ~5.7 seconds
I have another approach
select
date, sysdate - date
from
(select * from table order by date desc)
where
rownum = 1;
Query execution ~7.9 seconds
In this particular case, table has around 17,000,000 entries.
Is there a more optimal way to rewrite this?
Update: Well, I tried the hint a few of you suggested in a database development, although with a smaller subset than the original (approximately 1,000,000 records). Without the index the queries runs slower than with the index.
The first query, without index: ~0.56 secs, with index: ~0.2 secs. The second query, without index: ~0.41 secs, with index: ~0.005 secs. (This surprised me, I thought the first query would run faster than the second, maybe it's more suitable for smaller set of records).
I suggested to DBA this solution and he will change the table structure to accommodate this, and then i will test it with the actual data. Thanks

Is there an index on the date column?

That query is simple enough that there's likely nothing that can be done to optimize it beyond adding an index on the date column. What database is this? And is sysdate another column of the table?

Related

Optimize SELECT MAX(timestamp) query

I would like to run this query about once every 5 minutes to be able to run an incremental query to MERGE to another table.
SELECT MAX(timestamp) FROM dataset.myTable
-- timestamp is of type TIMESTAMP
My concern is that will do a full scan of myTable on a regular basis.
What are the best practices for optimizing this query? Will partitioning help even if the SELECT MAX doesn't extract the date from the query? Or is it just the columnar nature of BigQuery will make this optimal?
Thank you.
What you can do is, instead of querying your table directly, query the INFORMATION_SCHEMA.PARTITIONS table within your dataset. Doc here.
You can for instance go for:
SELECT LAST_MODIFIED_TIME
FROM `project.dataset.INFORMATION_SCHEMA.PARTITIONS`
WHERE TABLE_NAME = "myTable"
The PARTITIONS table hold metadata at the rate of one record for each of your partitions. It is therefore greatly smaller than your table and it's an easy way to cut your query costs. (it is also much faster to query).

How to modify my Schema or Query, so it runs effectively?

In a interview I was asked " You have a table with huge data but there is a requirement to view the rows that have been added in the last 15 minutes. How do you do this effectively without having to query the whole table as it takes so long".
I have said that I will create a view to have the latest 1000 records(Here I am assuming that there were less than a 1000 records cretaed in last 15 min) and I would query the view rather than the entire table. The interviewer was okay but he said there is a better approach and I am not able to find it.
You just need to make an index for the created_at column, this will avoid scanning the whole table and will considerably improve performance
You can try something like this:
SELECT columns
FROM table
WHERE DATE_ADD(last_seen, INTERVAL 15 MINUTE) >= NOW();
Or:
select *
from my_table
where my_column > timestamp '2020-10-09 00:00:05' - numtodsinterval(15,'MINUTE')
I am not sure aboutthe db you are using.
This goes 15 minutes back from last seen.

poorly performing query on order lines table

I have this query on the order lines table. Its a fairly large table. I am trying to get quantity shipped by item in the last 365 days. The query works, but is very slow to return results. Should I use a function based index for this? I read a bit about them, but havent work with them much at all.
How can I make this query faster?
select OOL.INVENTORY_ITEM_ID
,SUM(nvl(OOL.shipped_QUANTITY,0)) shipped_QUANTITY_Last_365
from oe_order_lines_all OOL
where ool.actual_shipment_date>=trunc(sysdate)-365
and cancelled_flag='N'
and fulfilled_flag='Y'
group by ool.inventory_item_id;
Explain plan:
Stats are up to date, we regather once a week.
Query taking 30+ minutes to finish.
UPDATE
After adding this index:
The explain plan shows the query is using index now:
The query runs faster but not 'fast.' Completing in about 6 minutes.
UPDATE2
I created a covering index as suggested by Matthew and Gordon:
The query now completes in less than 1 second.
Explain Plan:
I still wonder why or if a function-based index would have also been a viable solution, but I dont have time to play with it right now.
As a rule, using an index that access a "significant" percentage of the rows in your table is slower than a full table scan. Depending on your system, "significant" could be as low as 5% or 10%.
So, think about your data for a minute...
How many rows in OE_ORDER_LINES_ALL are cancelled? (Hopefully not many...)
How many rows are fulfilled? (Hopefully almost all of them...)
How many rows where shipped in the last year? (Unless you have more than 10 years of history in your table, more than 10% of them...)
Put that all together and your query is probably going to have to read at least 10% of the rows in your table. This is very near the threshold where an index is going to be worse than a full table scan (or, at least not much better than one).
Now, if you need to run this query a lot, you have a few options.
Materialized view, possibly for the prior 11 months together with a live query against OE_ORDER_LINES_ALL for the current month-to-date.
A covering index (see below).
You can improve the performance of an index, even one accessing a significant percentage of the table rows, by making it include all the information required by the query -- allowing Oracle to avoid accessing the table at all.
CREATE INDEX idx1 ON OE_ORDER_LINES_ALL
( actual_shipment_date,
cancelled_flag,
fulfilled_flag,
inventory_item_id,
shipped_quantity ) ONLINE;
With an index like that, Oracle can satisfy the query by just reading the index (which is faster because it's much smaller than the table).
For this query:
select OOL.INVENTORY_ITEM_ID,
SUM(OOL.shipped_QUANTITY) as shipped_QUANTITY_Last_365
from oe_order_lines_all OOL
where ool.actual_shipment_date >= trunc(sysdate) - 365 and
cancelled_flag = 'N' and
fulfilled_flag = 'Y'
group by ool.inventory_item_id;
I would recommend starting with an index on oe_order_lines_all(cancelled_flag, fulfilled_flag, actual_shipment_date). That should do a good job in identifying the rows.
You can add the additional columns inventory_item_id and quantity_shipped to the index as well.
Let recapitulate the facts:
a) You access about 300K rows from your table (see cardinality in the 3rd line of the execution plan)
b) you use the FULL TABLE SCAN the get the data
c) the query is very slow
The first thing is to check why is the FULL TABLE SCAN so very slow - if the table is extremly large (check the BYTES in user_segments) you need to optimize the access to your data.
But remember no index will help you the get 300K rows from say 30M total rows.
Index access to 300K rows can take 1/4 of an hour or even more if th eindex is not much used and a large part of it s on the disk.
What you need is partitioning - in your case a range partitioning on actual_shipment_date - for your data size on a monthly or yearly basis.
This will eliminate the need of scaning the old data (partition pruning) and make the query much more effective.
Other possibility - if the number of rows is small, but the table size is very large - you need to reorganize the table to get better full scan time.

Query is very slow when we put a where clause on the total selected data by query

I am running a query which is selecting data on the basis of joins between 6-7 tables. When I execute the query it is taking 3-4 seconds to complete. But when I put a where clause on the fetched data it's taking more than one minute to execute. My query is fetching large amounts of data so I can't write it here but the situation I faced is explained below:
Select Category,x,y,z
from
(
---Sample Query
) as a
it's only taking 3-4 seconds to execute. But
Select Category,x,y,z
from
(
---Sample Query
) as a
where category Like 'Spart%'
is taking more than 2-3 minutes to execute.
Why is it taking more time to execute when I use the where clause?
It's impossible to say exactly what the issue is without seeing the full query. It is likely that the optimiser is pushing the WHERE into the "Sample query" in a way that is not performant. Possibly could be resolved by updating statistics on the table, but an easier option would be to insert the whole query into a temporary table, and filter from there.
Select Category,x,y,z
INTO #temp
from
(
---Sample Query
) as a
SELECT * FROM #temp WHERE category Like 'Spart%'
This will force the optimiser to tackle it in the logical order of pulling your data together before applying the WHERE to the end result. You might like to consider indexing the temp table's category field also.
If you're using MS SQL by checking the management studio actual execution plan it may already suggest an index creation
In any case, you should add to the index used by the query the column "Category"
If you don't have an index on that table create it composed by column "Category" and all the other columns used in join or where
bear in mind by using like 'text%' clause you could end in index scan and not index seek

Oracle sql statement on very large table

I relative new to sql and I have a statement which takes forever to run.
SELECT
sum(a.amountcur)
FROM
custtrans a
WHERE
a.transdate <= '2013-12-31';
I's a large table but the statemnt takes about 6 minutes!
Any ideas why?
Your select, as you post it, will read 99% of the whole table (2013-12-31 is just a week ago, and i assume most entries are before that date and only very few after). If your table has many large columns (like varchar2(4000)), all that data will be read as well when oracle scans the table. So you might read several KB each row just to get the 30 bytes you need for amountcur and transdate.
If you have this scenario. create a combined index on transdate and amountcur:
CREATE INDEX myindex ON custtrans(transdate, amountcur)
With the combined index, oracle can read the index to fulfill your query and doesn't have to touch the main table at all, which might result in considerably less data that needs to be read from disk.
Make sure the table has an index on transdate.
create index custtrans_idx on custtrans (transdate);
Also if this field is defined as a date in the table then do
SELECT sum(a.amountcur)
FROM custtrans a
WHERE a.transdate <= to_date('2013-12-31', 'yyyy-mm-dd');
If the table is really large, the query has to scan every row with transdate below given.
Even if you have an index on transdate and it helps to stop the scan early (which it may not), when the number of matching rows is very high, it would take considerable time to scan them all and sum the values.
To speed things up, you could calculate partial sums, e.g. for each passed month, assuming that your data is historical and past does not change. Then you'd only need to scan custtrans only for 1-2 months, then quickly scan the table with monthly sums, and add the results.
Try to create an index only on column amountcur:
CREATE INDEX myindex ON custtrans(amountcur)
In this case Oracle will read most probably only the Index (Index Full Scan), nothing else.
Correction, as mentioned in comment. It must be a composite Index:
CREATE INDEX myindex ON custtrans(transdate, amountcur)
But maybe it is a bit useless to create an index just for a single select statement.
One option is to create an index on the column used in the where clause (this is useful if you want to retrieve only 10-15% rows by using indexed column).
Another option is to partition your table if it has millions of rows. In this case also if you try to retrieve 70-80% data, it wont help.
The best option is first to analyze your requirements and then make a choice.
Whenever you deal with date functions it's better to use to_date() function. Do not rely on implicit data type conversion.