Is it possible to add a zeroing weak ref (in the ARC sense, not GC) instance variable to a class created using the runtime? If so how?
There is a function called class_setWeakIvarLayout() which seems to be related to this but the documentation (both for this function and the non-weak counterpart) is very thin unfortunately.
You can achieve a zeroing weak reference using associative references with a container class. Basically:
Your container class contains a single ivar, which is declared __weak id
The associative reference 'setter' creates a conatiner, sets the __weak id ivar to point to your object, and then stores the container using objc_setAssociatedObjects(self,&key,container,OBJC_ASSOCIATION_RETAIN)
Your getter retrieves the container using objc_getAssociatedObject(self, &key) and returns the __weak id ivar. If your object has been dealloc'ed, the __weak id ivar of the container will be zero.
class_setWeakIvarLayout() is used under GC. I'm not sure it is used under ARC at all. In any case, you can't change the layout of a class at runtime, including adding arbitrary instance variables (though you can add ivars to a class and recompile without recompiling subclasses because of the modern runtime).
See Associated objects. They provide most of what you want, maybe all (I'm not sure if zeroing-weak is supported directly -- not, you'll need to find an alternative solution).
http://developer.apple.com/library/ios/#documentation/cocoa/conceptual/objectivec/Chapters/ocAssociativeReferences.html
Ahh -- OK. Thanks for the clarification. I'm not sure if you can dynamically set the zeroing-weak ARC behaviors via API. The source for the runtime and compiler are available, though.
Note that you can pretty easily fake zeroing weak under non-ARC environments by setting up a class that implements -dealloc to do whatever cleanup you need, associating instances with objects that need to trigger said cleanup on deallocation and making sure nothing else retains the object that has the custom -dealloc notification hook. It is a bit fragile, but it works.
Related
I have a situation where I'm keeping references to ivars which need to be persistent. In one object, I have an array of pointers to ivars in another object, which are used over the entire lifetime of the program. In other words, I'm not just passing a reference to retrieve a value -- I'm keeping the pointers around.
Is this a valid? Is it possible that the ivars might move? Are there cases where objects instantiated objects are moved around at runtime unbeknownst to the program? Or, do objects stay exactly where they are created. If the later is the case, is there any reason not to use references the way I am?
I'm using ARC.
Note: This probably wasn't a good way to design this to begin with, but... it's all done and working 99%! (except for a nasty crash which reboots the entire phone... )
Objects and their instance variables don't move once created. However, you also need to keep a strong reference to the object that holds the ivar. Otherwise, the object might be deallocated, leaving you with a dangling pointer.
Note that it is generally a very bad idea to have pointers to another object's insntance variables.
While there's no technical problem with accessing the ivars from outside (as rob stated) there's still the architectural design to consider: The approach you've taken breaks encapsulation. Additionally it is very uncommon for Objective-C.
So regarding maintainability of your code I would recommend to refactor the code. In Objective-C there's no friend declaration as in C++, so it's unusual to access ivars from outside the declaring class.
Let's say an object of class A wants to access the ivars of an object of class B persistently (in your example).
What you normally do is create a property (with the strong annotation, like #property (strong) ClassB *myBVar) in class A to reference an object of class B.
If you want to set or read B's properties you use the dot notation or call the getter/setter methods:
myBVar.name = #"Jim";
NSLog(#"Name:%#",myBVar.name);
[myBVar setName:#"Jim"];
NSLog(#"Name:%#",[myBVar name]);
You never call a ivar directly as it's implementation might change.
I'm trying to learn/understand what happens and why when working with or creating various objects. (Hopefully to LEARN from the docs.)
I'm reading "Programming in Objective-C 2.0" (2nd edition, by Steven Kochan). On page 408, in the first paragraph is a discussion of retain counts:
Note that its reference count then goes to 2. The addObject: method does this automatically; if you check your documentation for the addObject: method, you will see this fact described there.
So I read the addObject: docs:
Inserts a given object at the end of the array.
There, the description is missing, while other items, like arrayByAddingObject:, state it:
Returns a new array that is a copy of the receiving array with a given object added to the end.
Where in the reference does it indicate that addObject: increases the retain count? Given the presence of ARC, I should still understand what these methods are doing to avoid bugs and issues. What does ARC bring to this? (Going to read that again...)
Great question, I'm glad to see someone actually reading the docs and trying to understand them!
Since you are looking for how to research answers using Apple's documentation more so than the actual answer itself, here is how I found the answer:
First I look at the class reference for addObject: which is a method of NSMutableArray and there is no mention of memory management.
Then I look at the Overview section at the top... Hmmm, still no luck.
Since the behavior might be inherited from a parent class, I look at the Inherits from section at the top of the class reference and see that NSArray is the most immediate parent. Let's check there:
Under the Overview There is one small section about retain's:
Special Considerations
In most cases your custom NSArray class should conform to Cocoa’s
object-ownership conventions. Thus you must send retain to each object
that you add to your collection and release to each object that you
remove from the collection. Of course, if the reason for subclassing
NSArray is to implement object-retention behavior different from the
norm (for example, a non-retaining array), then you can ignore this
requirement.
Okay, I'm still not happy... Where next? The parent class of NSArray is NSObject and I know that it won't be covered there in this case (from experience) so I won't bother checking that. (If the parent was another class or something that might be covered by NSObject, I would keep moving up the tree until I found something.)
The Companion Guides usually contains a lot of good information for these types of classes. Let's try the first one, Collections Programming Topics.
The first section (after Overview) is Accessing Indexes and Easily Enumerating Elements: Arrays. Sounds promising! Click on Relevant Chapters: “Arrays: Ordered Collections”
There it is under Array Fundamentals along with a link to even more information:
And when you add an object to an NSMutableArray object, the object
isn’t copied, (unless you pass YES as the argument to
initWithArray:copyItems:). Rather, an object is added directly to an
array. In a managed memory environment, an object receives a retain
message when it’s added; in a garbage collected environment, it is
strongly referenced. When an array is deallocated in a managed memory
environment, each element is sent a release message. For more
information on copying and memory management, see “Copying
Collections.”
The book must be referring to out of date documentation because you are correct it doesn't mention anything about the retain count. It does in fact retain the object though. The way you need to think of it is not in terms of retain counts (which are useless) but rather ownership. Especially so when using ARC.
When you add an object to an NSMutableArray, it is taking ownership of that object (in ARC terminology it has a strong reference to it).
"What does ARC bring to this?"
ARC does nothing different. All ARC does (besides some optimization) is add the same release, retain, and autorelease statements that you would add yourself without using ARC. All you need to care about is that once you add an object to the array, it will live at least as long as the array.
And the arrayByAddingObject: method creates a new NSArray (or NSMutableArray) containing the object you're passing, and keeps a strong reference to the passed object. The actual array object that it creates has no references yet unless you assign it to either an ivar, property, or local variable. What you assign it to determines it's lifespan.
Basically even without ARC, it's best to think of object life-cycles in terms of ownership, ARC just formalizes that. So because of that, when using the frameworks, it doesn't matter when retains happen or don't happen, you are only responsible for your objects until you pass ownership to another object and you can trust that the framework will keep the object alive as long as it needs it.
Now of course you have to intuit what constitutes ownership. For instance delegate properties are often assign, or in ARC unsafe_unretained or weak, to prevent circular retains cycles (where two objects each retain each other), though are sometimes retained/strong so you need to look into those on a case by case basis.
And also in cases like key value observing and NSNotification observing the object you are observing does not retain the observer.
But those are really exceptions to the rule. Generally you can assume a strong reference.
Regarding this sentence above: "The actual array object that it creates has no references yet unless you assign it to either an ivar, property, or local variable. What you assign it to determines it's lifespan." I'll try to explain:
When you run this piece of code: [someArray arrayByAddingObject:someObject]; you've instantiated a new NSArray or NSMutableArray object (depending on which object type someArray is) but you haven't actually assigned it to any reference. That means that if you're using ARC, it may be immediately released afterwards, or if not using ARC, it will be released when it's autoreleasepool is drained (probably on the next iteration of that thread's runloop).
Now if instead you did this: NSArray *someOtherArray = [someArray arrayByAddingObject:someObject]; you now have a reference to the newly created array, called someOtherArray. In this case, this is a local variable who's scope is only within whichever set of { } it resides (so it could be inside an if statement, a loop, or a method. Now if you do nothing else with it, it will die sometime after it's scope ends (it isn't guaranteed to die right away, but that isn't important, you just can't assume it lives longer).
Now if in your class you have an iVar (instance variable) declared in the header like NSArray *someOtherArray; (which is strong by default in ARC) and you run someOtherArray = [someArray arrayByAddingObject:someObject]; somewhere in your class, the object will live until you either remove the reference (someOtherArray = nil), you overwrite the reference (someOtherArray = someThirdArray), or the class is deallocated. If you were not using ARC, you would have to make sure to retain that to achieve the same effect (someOtherArray = [[someArray arrayByAddingObject:someObject] retain]; which is essentially what ARC is doing behind the scenes).
Or you may have a property declared instead like #property (nonatomic, strong) NSArray *someOtherArray in which self.someOtherArray = [someArray arrayByAddingObject:someObject]; would achieve the same effect but would use the proprety accessor (setSomeOtherArray:) or you could still use someOtherArray = [someArray arrayByAddingObject:someObject]; to set the iVar directly (assuming you #synthesized it).
Or assuming non-ARC, you might have declared the property like #property (nonatomic, retain) NSArray *someOtherArray in which self.someOtherArray = [someArray arrayByAddingObject:someObject]; would behave exactly as ARC would, but when setting the iVar directly you would still need to add that retain manually.
I hope that clears things up a bit, please let me know if there's anything I glossed over or left out.
As you mentioned in your comment, the key here is intuitively knowing when an object would be considered owned by another one or not. Luckily, the Cocoa frameworks follow a pretty strict set of conventions that allow you to make safe assumptions:
When setting an NSString property of a framework object (say the text property of a UILabel for example) it is always copied (if anyone knows of a counter-example, please comment or edit). So you don't have to worry about your string once you pass it. Strings are copied to prevent a mutable string from being changed after it's passed.
When setting any other property other than delegate, it's (almost?) always retained (or strong reference in ARC)
When setting delegate properties, it's (almost?) always an assign (or weak reference) to prevent circular retain cycles. (For instance, object a has a property b that is strong referenced and b has a strong referenced delegate property. You set a as the delegate for b. Now a and b are both strongly referencing each other, and neither object will ever reach a retain count of 0 and will never reach it's dealloc method to dealloc the other object. NSURLConnection is a counter-example that does strongly reference it's delegate, because it's delegate is set via a method -- see that convention below -- and it's convention to nil out or release an NSURLConnection after it completes rather than in dealloc, which will remove the circular retain)
When adding to an array or dictionary, it's always retained (or strong reference).
When calling a method and passing block(s), they are always copied to move them from the stack (where they are initially created for performance purposes) into the heap.
Methods that take in object parameters and don't return a result immediately are (always? I can't think of any that don't) either copying or retaining (strong referencing) the parameters that you pass to ensure that the method can do what it needs to with them. For instance, NSURLConnection even retains it's delegate because it's passed in via a method, whereas when setting the delegate property of other objects will not retain, as that is the convention.
It's suggested that you follow these same conventions in your own classes as well for consistency.
Also, don't forget that the headers of all classes are available to you, so you can easily see whether a property is retain or assign (or strong or weak). You can't check what methods do with their parameters, but there's no need because of the convention that parameters are owned by the receiver.
In general, you should look in the "most global" spot for information about anything in the Cocoa APIs. Since memory management is pervasive across the system APIs and the APIs are consistent in their implementation of the Cocoa memory management policy, you simply need to read and understand the Cocoa memory management guide.
Once understood, you can safely assume that all system APIs implement to that memory management policy unless explicitly documented otherwise.
Thus, for NSMutableArray's addObject: method, it would have to retain the object added to the array or else it would be in violation of that standard policy.
You'll see this throughout the documentation. This prevents every method's documentation from being a page or more long and it makes it obvious when the rare method or class implements something that is, for whatever reason (sometimes not so good), an exception to the rule.
In the "Basic Memory Management Rules" section of the memory management guide:
You can take ownership of an object using retain.
A received object is normally guaranteed to remain valid within the
method it was received in, and that method may also safely return the
object to its invoker. You use retain in two situations: (1) In the
implementation of an accessor method or an init method, to take
ownership of an object you want to store as a property value; and (2)
To prevent an object from being invalidated as a side-effect of some
other operation (as explained in “Avoid Causing Deallocation of
Objects You’re Using”).
(2) is the key; an NS{Mutable}Array must retain any added object(s) exactly because it needs to prevent the added object(s) from being invalidated due to some side-effect. To not do so would be divergent from the above rule and, thus, would be explicitly documented.
When using Objective-C properties can you stop creating instance variables altogether or do explicit instance variables (not the ones synthesized by the properties) still serve a purpose where properties would be inappropriate?
can you stop creating instance variables altogether
No, you can't (in a sense). What you can do is stop declaring them if you have properties. If you synthesize a property and you haven't declared the instvar, it will get declared for you, so you are creating an instance variable, just not explicitly.
do they still serve a purpose where properties would be inappropriate?
It used to be the advice to create properties for everything because having synthesized properties does almost all of the retains and releases for you. However, with ARC that reason for using properties to wrap the memory management has gone away. The advice now (for ARC) is, I believe, use properties to declare your external interface, but use direct instance variables where the variable is part of the object's internal state.
That's a good reason to adopt ARC: properties revert to their true purpose only of being part of the class's API and it's no longer necessary to use them as a hacky way to hide memory management work.
Edit
One more thing: you can now declare instance variables in the #implementation so there is now no need to leak any implementation details in the #interface. i.e.
#implementation MyClass
{
NSString* myString;
}
// method definitions
#end
And I'm pretty sure it works in categories too. - see comment below
I recommend declaring everything as properties and avoiding manual ivars altogether. There is no real upside to manually creating ivars. Declare public properties in your header #interface, declare private properties in a private class extension in your .m file.
To some of JeremyP's points, internal use of accessors still has significant value under ARC, even though memory management is no longer a significant concern. It ensures that KVO works properly, subclasses better, supports custom setters (particularly for things like NSTimer), supports custom getters (such as for lazy instantiation), etc. It is exceedingly error-prone to have a mix of accessors and ivars. It's far too easy to forget which you need to access in which way. Consistency is the hallmark of good ObjC.
If you absolutely must declare an ivar for some reason, then you should do it in the #implementation block as JeremyP notes.
UPDATE (Oct-2013):
Apple's guidance (From Programming with Objective-C: Encapsulating Data):
Most Properties Are Backed by Instance Variables
In general, you should use accessor methods or dot syntax for property access even if you’re accessing an object’s properties from within its own implementation, in which case you should use self:
...
The exception to this rule is when writing initialization, deallocation or custom accessor methods, as described later in this section.
This question was addressed before here
When you use synthesize the instance variables are handled and instantiated for you. If you're using Lion with the new version of XCode also take a look at the various properties in ARC in Transitioning to ARC
you can always access properties from outside. So if you want a variable only to be read from inside a class you still have to declare a iVar. Also accessing a public ivar with object->ivar is slightly faster than using a method-call.
I have member variables in my custom UIViewController that are defined as 'assign' (not 'retain') like this:
#property (nonatomic, assign) UIButton* mSkipButton;
In my loadView method, I set the var, for instance self.mSkipButton, to an autoreleased alloc of the variable type. I then attach it to my controller's view essentially having the view reference count and release it as needed.
This concerns me, however, that I have the pointer stored in my member var and that it could be referencing released memory if the count decrements at some point. Is it better practice to instead declare the variable as 'retain' and then in the viewDidUnload method release the member var (or just set it to nil to release and make sure i don't have an address in there)?
Alternatively, could I simply set the member var to nil in viewDidUnload and not make it a retained variable?
Is it better practice to instead declare the variable as 'retain' and then in the viewDidUnload...?
Yes, use retain -- good instinct. In viewDidUnload, you'd typically just set it to nil via the ivar's setter: self.ivar = nil;
I find it easier to be aware of and manage object codependencies explicitly, than to deal with issues related to using assign. You can completely avoid the issues of holding an unmanaged reference.
Arguments can be made that assign would usually be fine here (and it is in some cases), but using assign can complicate object graphs and ownership for anyone working with the class. As program complexity grows (and the libraries you depend on change), it becomes increasingly difficult to track lifetimes of unmanaged references. Things tend to break, or operate differently on different hardware and software combinations. Attempting to manage the lifetime of an unmanaged object over a complex program or in a concurrent context is self abuse. Guaranteeing defined and predictable behavior/operation reduces bug counts.
That's a property, not a "member var" (known in Objective-C as an instance variable or ivar.)
The semantics of a property depend on how that property is going to be used. Generally speaking, you'll want your properties to be retained for the lifetime of your object. If the property is a connected IBOutlet, this will be done for you by the NIB loader; otherwise, you must be explicit and use the retain or copy attribute on the property.
For objects that are expected to own your object, a property should always be marked assign to avoid a retain loop. For example, an object usually owns any object for which it acts as a delegate (usually, but not always--every CS rule has an exception.)
If I release the object that's holding a reference to the variable that I need to release, is that sufficient? Or must I release at every level of the containment hierarchy? I fear that my logic comes from working with a garbage collector for too long.
For instance, I assigned to this property of a UIPickerView instance by hand instead of using IB
#property(nonatomic, assign) id<UIPickerViewDelegate> delegate
Since it's an assign property, I can't just release the reference after I assign it. When I finally release my UIPickerView instance, do I need to do this:
[singlePicker.delegate release];
[singlePicker release];
or is the second line sufficient?
Also: Are these assign properties the norm, or is that mostly for Interface Builder? I thought that retain properties were the normal thing to expect.
The properties are declared assign instead of retain for a reason - delegates are not owned by their holders and they don't call release on them. Otherwise there would be a problem with circular references. You however have to call release on the object you use as the delegate somewhere if you own them.
If delegates were retained, imagine the following situation:
a takes b as a delegate, retains b
b takes a as a delegate, retains a
Now you have a circular reference - without ugly cleanup code that explicitly tells them to release their delegates, both of the objects will never be deallocated.
The subject is treated in Delegation and the Cocoa Application Frameworks:
Delegating objects do not (and should not) retain their delegates. However, clients of delegating objects (applications, usually) are responsible for ensuring that their delegates are around to receive delegation messages. To do this, they may have to retain the delegate in memory-managed code. This precaution applies equally to data sources, notification observers, and targets of action messages. Note that in a garbage-collection environment, the reference to the delegate is strong because the retain-cycle problem does not apply.