Control Computer Fans Objective-C - objective-c

Does anyone know of any way to programmatically control the RPMs of a Mac's fans? I briefly checked the Apple Dev site, but couldn't find anything. I'm guessing it's not as easy as:
[fans faster];
I'm wondering how smcFanControl achieves this. Am I right to assume that the "smc" in "smcFanControl" stands for System Management Controller?
Update:
smcFanControl source code is released under GLP license! ^_^ Oh, yeah! Free knowledge!

You are correct on two counts: SMC does stand for "System Management Controller", and fooling around with it isn't as simple as [fans faster]. Programming the SMC requires knowledge of the firmware and some down-and-dirty hardware device driver programming. You probably have to talk to the manufacturer just to get the specs, and if you do, you're not going to be able to program it in Objective C. Alas, you're probably better off trying to control smcFanControl using AppleScript :)

this answer may not able to help. I don't have Mac so I don't know how it works, just tell some basics.
Generally, a computer FAN speed control is handled by SuperIO chip or BMC(bus management controller) chip.
if ur board using a SuperIO, then it is very hard to modify the FAN speed since the speed adjustment algorithm is fixed (fused) inside the chip.
if the board using BMC or similar solution, it will use Firmware to control the speed. most the firmware is upgrade-able by special tool.
above solutions will provide hardware level fan speed control, but the OS level can not change the speed.
I suppose the smcFancontrol in Mac is not a command to change the FAN speed, but able to enable "smart FAN speed control" function.

Related

Is there any open hardware microcontroller?

Is there any open hardware microcontroller?. I can't find something about this.
I mean microcontroller which i can buy from vendors or somewhere and i can download and see full scheme of it. And this information enough to emulate it. something like it.
I think they opened up the code for the propeller yes? and you can get an msp430 clone on opecores or an arm2 on opencores as well as the or1k and 2k, plus a myriad of other open source cores there and elsewhere (just google it). The lm32 is open, and the mico8 is maybe, certainly can be used on a lattice part. But you can certainly find cores like that from each of the fpga/cpld vendors, tuned for and likely free on their platforms. Plus what is it the 68hc11 there are free and or for purchase cores, probably 8051s, etc. And of course there is the cortex-m1, not open but if you wanted a microcontroller in source form to implement on your platform.
The propeller is probably the closest to what you are looking for.
I am not sure what you mean with "open hardware microcontroller". For professionals it's much better to buy a microcontroller or a microcontroller design (ARM for example). Hobbyists usually don't have access to a fab and the required tooling to create their own ASIC.
If you're interested in implementations for FPGAs on the other hand, you should check out the site http://opencores.org/projects where you can find (among other things) different open-source processors.
For what it's worth, SPARC is fully "open", both in it's early conception, and then again later in life by Sun. I think short of some big-iron stuff (that's gradually been taken over by x86), it's basically dead. Maybe you could revive it?

How to move from microcontrollers to embedded linux?

As a kind of opposite to this question: "Is low-level embedded systems programming hard for software developers" I would like to ask for advice on moving from the low level embedded systems to programming for more advanced systems with OS, especially embedded Linux.
I have mostly worked with small microcontroller hardware and software, but now doing software only. My education also consists of hardware and embedded things mainly. I haven't had many programming courses and don't know much about software design or OO coding.
Now I have a big project in my hands that is going to be done in embedded Linux. I have major problems with designing things and keeping things manageable because I haven't really needed to do that before. Also making use of multitasking and blocking calls instead of running "parallel" task from main function is like another world.
What kind of experiences do you have on moving from low-level programming to bigger systems with OS (Linux)? What was hard and how did you solve it? What kind of mindset is needed?
Would it be worthwhile to learn C++ from zero or continue using plain C?
The main problems with using the Linux kernel to replace microcontroller systems is driving the devices you are interfacing with. For this you may have to write drivers. I would say stick with C as the language because you are going to want to keep the user-space as clean as possible. Look into the uclibc library for a leaner C standard library.
http://www.uclibc.org/
You may also find busybox useful. This provides many userspace utilities as a single binary.
http://www.busybox.net/
Then it is simply a matter of booting from some storage to a live system and running some controlling logic through init that interfaces with your hardware. If need be you can access the live system and run the busybox utilities. Really, the only difference is that the userspace is much leaner than in a normal distribution and you will be working 'closer' to the kernel in terms of objectives.
Also look into realtime linux.
http://www.realtimelinuxfoundation.org/
If you need some formal promise of task completion. I suspect the hardest bit will be booting/persistent storage and interfacing with your hardware if it is exotic. If you are unfamiliar with Linux booting then
http://www.cromwell-intl.com/unix/linux-boot.html
Might help.
In short, if you have not developed at a deep level for Linux, built your own distro, or have kernel experience then you might find the programming hard-going.
http://www.linuxdevices.com/ Might also help
Good Luck
In order to work with Unix/Linux you should get into the Unix philosophy: http://www.faqs.org/docs/artu/ch01s06.html
I consider the whole book a quite interesting read: http://www.faqs.org/docs/artu/index.html
Here you can find a free Linux distro for embedded targets plus bootloader to get you started: http://www.denx.de/wiki/DULG/WebHome
I was in a very similar predicament not too long ago. I bought and read Embedded Linux Primer and it was a very helpful way to make the mental-transition to a high level OS (from a microcontroller perspective).
If you have the "time to 'take your time'," you could obviously make the transition. But if you need to get up to speed quickly, you may want to strongly consider getting a technical mentor to help guide you.
You also may find it useful to work your way into Linux by starting out with ucLinux. It's basically Linux on a microcontroller. You could get a feel for the kernel without the virtual memory aspect of it as transition. See if ucLinux supports a microcontroller that you are already familiar with and see how the kernel interacts with that architecture.
I agree that the Embedded Linux Primer book is great for getting your brain wrapped around embedded Linux. You're better off sticking with C for now. C++ can wait, and it's more useful for applications, not driver code.
When you're comfortable with how ucLinux operates, then you could start out with a normal Linux kernel on a microprocessor architecture such as ARM that has an MMU and virtual memory.
Just my two cents!

embedded application

In the last two months I've worked as a simple application using a computer vision library(OpenCV).
I wish to run that application directly from the webcam without the need of an OS. I'm curious to know if that my application can be burned into a chip in order to not have the OS to run it.
Ofcorse the process can be expensive, but I'm just curious. Do you have any links about that?
ps: the application is written in C.
I'd use something bigger than a PIC, for example a small 32 bit ARM processor.
Yes. It is theoretically possible to port your app to PIC chips.
But...
There are C compilers for the PIC chip, however, due to the limitations of a microcontroller, you might find that the compiler, and the microcontroller itself is far too limited for computer vision work, especially if your initial implementation of the app was done on a full-blown PC:
You'll only have integer math available to you, in most cases, if not all (can't quote me on that, but our devs at work don't have floating point math for their PIC apps and it causes many foul words to emanate from their cubes). Either that, or you'll need to hook to an external math coprocessor.
You'll have to figure out how to get the PIC chip to talk USB to the camera. I know this is possible, but it will require additional hardware, and R&D time.
If you need strict timing control,
you might even have to program the
app in assembler.
You'd have to port portions of OpenCV to the PIC chip, if it hasn't been already. My guess is not.
If your'e not already familiar with microcontroller programming, you'll need some time to get up to speed on the differences between desktop PC programming and microcontroller programming, and you'll have to gain some experience in that. This may not be an issue for you.
Basically, it would probably be best to re-write the whole program from scratch given a PIC chip constraint. Good thing is though, you've done a lot of design work already. It would mainly be hardware/porting work.
OR...
You could try using a small embedded x86 single-board PC, perhaps in the PC/104 form factor, with your OS/app on a CF card. It's a real bone fide PC, you just add your software. Good thing is, you probably wouldn't have to re-write your app, unless it had ridiculous memory footprint. Embedded PC vendors are starting to ship boards based on 1 GHz Intel Atoms, and if you needed more help you could perhaps hook a daughterboard onto the PC-104 bus. You'll work around all of the limitations listed above, as your using an equivalent platform to the PC you developed your app on. And it has USB ports! If you do a thorough cost analysis and if your'e cool with a larger form factor, you might find it to be cheaper/quicker to use a system based on a SBC than rolling a solution using PIC chips/microcontrollers.
A quick search of PC-104 on Google would reveal many vendors of SBCs.
OR...
And this would be really cheap - just get a off-the-shelf cheap Netbook, overwrite the OEM OS, and run the code on there. Hackish, but cheap, and really easy - your hardware issues would be resolved within a week.
Just some ideas.
I think you'll find this might grow into pretty large project.
It's obviously possible to implement a stand-alone hardware solution to do something like this. Off the top of my head, Rabbit's solutions might get you to the finish-line faster. But you might be able to find some home-grown Beagle Board or Gumstix projects as well.
Two Google links I wanted to emphasize:
Rabbit: "Camera Interface Application Kit"
Gumstix: "Connecting a CMOS camera to a Gumstix Connex motherboard"
I would second Nate's recommendation to take a look at Rabbit's core modules.
Also, GHIElectronics has a product called the Embedded Master that runs .Net MicroFramework and has USB host/device capabilities built-in as well as a rich library that is a subset of the .Net framework. It runs on an Arm processor and is fairly inexpensive (> $85). Though not nearly as cheap as a single PIC chip it does come with a lot of glue logic pre-built onto the module.
CMUCam
I think you should have a look at the CMUcam project, which offers affordable hardware and an image processing library which runs on their hardware.

starting a microcontroller simulator/emulator

I would like to create/start a simulator for the following microcontroller board: http://www.sparkfun.com/commerce/product_info.php?products_id=707#
The firmware is written in assembly so I'm looking for some pointers on how one would go about simulating the inputs that the hardware would receive and then the simulator would respond to the outputs from the firmware. (which would also require running the firmware in the simulated environment).
Any pointers on how to start?
Thanks
Chris
Writing a whole emulator is going to be a real challenge. I've attempted to write an ARM emulator before, and let me tell you, it's not a small project. You're going to either have to emulate the entire CPU core, or find one that's already written.
You'll also need to figure out how all the IO works. There may be docs from sparkfun about that board, but you'll need to write a memory manager if it uses MMIO, etc.
The concept of an emulator isn't that far away from an interpreter, really. You need to interpret the firmware code, and basically follow along with the instructions.
I would recommend a good interactive debugger instead of tackling an emulator. The chances of destroying the hardware is low, but really, would you rather buy a new board or spend 9 months writing something that won't implement the entire system?
It's likely that the PIC 18F2520 already has an emulator core written for it, but you'll need to delve into all the hardware specs to see how all the IO is mapped still. If you're feeling up to it, it would be a good project, but I would consider just using a remote debugger instead.
You'll have to write a PIC simulator and then emulate the IO functionality of the ports.
To be honest, it looks like its designed as a dev kit - I wouldn't worry about your code destroying the device if you take care. Unless this a runner-up for an enterprise package, I would seriously question the ROI on writing a sim.
Is there a particular reason to make an emulator/simulator, vs. just using the real thing?
The board is inexpensive; Microchip now has the RealICE debugger which is quite a bit more responsive than the old ICD2 "hockey puck".
Microchip's MPLAB already has a built-in simulator. It won't simulate the whole board for you, but it will handle the 18F2520. You can sort of use input test vectors & log output files, I've done this before with a different Microchip IC and it was doable but kinda cumbersome. I would suggest you take the unit-testing approach and modularize the way you do things; figure out your test inputs and expected outputs for a manageable piece of the system.
It's likely that the PIC 18F2520 already has an emulator core written for it,
An open source, cross-platform simulator for microchip/PICs is available under the name of "gpsim".
It's extremely unlikely that a bug in your code could damage the physical circuitry. If that's possible, then it is either a bug in the board design or it should be very clearly documented.
If I may offer you a suggestion from many years of experience working with these devices: don't program them in assembly. You will go insane. Use C or BASIC or some higher-level language. Microchip produces a C compiler for most of their chips (dunno about this one), and other companies produce them as well.
If you insist on using an emulator, I'm pretty sure Microchip makes an emulator for nearly every one of their microcontrollers (at least one from each product line, which would probably be good enough). These emulators are not always cheap, and I'm unsure of their ability to accept complex external input.
If you still want to try writing your own, I think you'll find that emulating the PIC itself will be fairly straightforward -- the format of all the opcodes is well documented, as is the memory architecture, etc. It's going to be emulating the other devices on the board and the interconnections between them that will kill you. You might want to look into coding the interconnections between the components using a VHDL tool that will allow you to create custom simulations for the different components.
Isn't this a hardware-in-the-loop simulator problem? (e.g. http://www.embedded.com/15201692 )

Best platform for learning embedded programming? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
I'm looking to learn about embedded programming (in C mainly, but I hope to brush up on my ASM as well) and I was wondering what the best platform would be. I have some experience in using Atmel AVR's and programming them with the stk500 and found that to be relatively easy. I especially like AVR Studio and the debugger that lets you view that state of registers.
However, If I was to take the time to learn, I would rather learn about something that is prevalent in industry. I am thinking ARM, that is unless someone has a better suggestion.
I would also be looking for some reference material, I have found the books section on the ARM website and if one is a technically better book than another I would appreciate a heads up.
The last thing I would be looking for is a prototyping/programming board like the STK500 that has some buttons and so forth.
Thanks =]
"embedded programming" is a very broad term. AVR is pretty well in that category, but it's a step below ARM, in that it's both simpler to use, as well as less powerful.
If you just want to play around with ARM, buy a Nintendo DS or a Gameboy Advance. These are very cheap compared to the hardware inside (wonders of mass production), and they both have free development toolchains based off of gcc which can compile to them.
If you want to play around with embedded linux, BeagleBoard is looking to be a good option, only $150 and it has a ton of features.
Personally I think AVR is best for the smaller-sized 8-bit platforms, and ARM is best for the larger, more powerful 32-bit based platforms. Like many AVR fans, I don't like PIC. It just seems worse in pretty much every way. Also avoid anything that requires you to write any type of BASIC.
If you just want to play around with it, I'd suggest the Arduino platform (http://www.arduino.cc). It's based on the ATmega168 or ATmega8, depending on the version. It uses a C-like language and has its own IDE.
Myself I've worked in embedded programming for 9 years now and have experience on TI MSP430, Atmel AVR (a couple of flavours) and will be using an ARM soon.
My suggestion is to pickup something that has some extra features in the processor like ethernet controller and CAN controller, even get two or three if you can. Embedded devices are nice to work with, but once they can talk to other similar devices via CAN or get onto a network, they can become much more fun to play with.
ADI's Blackfin is another option since it's quite a straight forward architecture to program, yet can also do some fairly hefty DSP stuff should you choose to go down that route. It helps that the assembly language is quite sane too.
The Blackfin STAMP boards are an inexpensive (~$100 last I checked) way in, and they support the free GCC tools and uClinux.
Whatever architecture you choose I'd definitely recommend first downloading the toolchain\SDK and looking through the sample projects and tutorials - generally having a bit of a play about. You can often get quite acquainted with the architecture through simulation without even touching any hardware.
ARM has the nicest instruction set of the widely used embedded platforms, leaving you free to pick up the general principles of writing software for embedded platforms without getting bogged down in weird details like non-orthogonal registers or branch delay slots. There are plenty of emulators - ARM's own, while not free, is cycle-accurate; and a huge variety of programmable ARM-based hardware is cheap and easy to come by as well.
The TI MSP430 is a great platform for learning how to program microcontrollers. TI has a variety of FREE Tools and some cheap evaluation boards (starting at $20). Plus, it's a low-power, modern microcontroller.
A nice choice would be PIC18 by Microchip
It has quite alot of material, documentation, tutorials and projects on the internet
Free IDE and compiler.
you can pull your own flash writer in a few minutes.
(Although for a debugger to work you'll need to work harder)
If you're a student (or has a student email address) Microchip will send you free sample chips. So basically you can have a full development environment for close to nothing.
PICs are quite prevalent in the industry. Specifically as controllers for robots for some reason although they can do so much more.
Arduino seems to be the platform of choice these days for beginners although there are lots of others. I like the Olimex boards personally but they are not really for beginners.
Microchip's PIC range of CPUs are also excellent for beginners, especially if you want to program in assembler.
BTW, Assembler is not used as much as it used to. The general rule with embedded is if you've got 4k of memory or more, use C. You get portability and you can develop code faster.
I suppose it depends on your skill level and what you want to do with the chip. I usually choose which embedded chip to use by the available peripherals. If you want a USB port, find one with USB built in, if you want analogue-to-digital, find one with an ADC etc. If you've got a simple application, use an 8-bit but if you need serious number crunching, go 32 bits.
I'd like to suggest the beagleboard from TI. It has a Omap3 on it. That's a Cortex-A8 ARM11 CPU, a C64x+ DSP and a video accelerator as well.
The board does not need an expensive jtag device. A serial cable an an SD-Card is all you need to get started. Board costs only $150 and there is a very active community.
www.beagleboard.org
Your question sort of has been answered in this question.
To add to that, the embedded processor industry is very segmented, it doesn't have a major player like Intel/x86 is for the "desktop" processor industry. The ARM processor does have a large share, so does MIPS I believe, and there are many smaller more specific microcontroller like chips available (like the MSP430 etc from TI).
As for documentation, I do embedded development for a day job, and the documentation we have access to (as software developers) is rather sparse. Your best bet is to use the documentation available on the processor manufacturers site.
Take a look at Processing and the associated Arduino and Wiring boards.
If you just want to have fun, then try the Parallax Propeller chip. The HYDRA game platform looks like a blast. There's a $100 C compiler for it now.
I started on BASIC stamps, moved up through SX chips and PICs into 8051s, then 68332s, various DSPs, FPGA soft processors, etc.
8051s are more useful in the real world... the things won't go away. There's TONS of derivatives and crazy stuff for them. (Just stay away from the DS80C400) The energy industry is absolutely full of them.
Start with something tiny. If you have external RAM and plenty of registers... what's the difference between that and a SBC?
Many moons ago I've worked with 8-bitters like 68HC05 and Z80, later AVR and MSP430 (16-bit). However most recent projects were on ARM7. Several manufacturers offer ARM controllers, in all colors and sizes (well, not really color).
ARM(7) is replacing 8-bit architecture: it's more performant (32-bit RISC at faster instruction cycles than most 8-bitters), has more memory and is available with several IO-configurations.
I worked with NXP LPC2000 controllers, which are also inexpensive (< 1 USD for a 32-bitter!).
If you're in Europe http://www.olimex.com/dev/index.html has some nice low-cost development boards. Works in the rest of the world too :-)
For a fun project to test, have a look at xgamestation
But for a more industrial used one chip solution programming, look at PIC
For my Computer Architecture course I had to work with both a PIC and an AVR; in my opinion the PIC was easier to work with, but that's maybe because that's what we worked with the most and we had the most time to get used to. We used the AVR maybe only a couple of times so I couldn't get the hang of it perfectly but it also was nothing overly complicated, or at least not more frustrating than the other.
I think you can also order microprocessor samples from Microchip's website so you could also get started with that?
Second that:
Arduino platform http://www.arduino.cc
HTH
For learning, you can't go past the AVR. The chips are cheap and they'll run with zero external components - they also supply enough current to drive an LED straight from the port.
You can start with a cheap programmer such as lady-ada's USBTinyISP (USD$22 for a kit) which can power your board with 5V from the USB port. Get the free tools WinAVR (GCC based) and AVRStudio and get a small project working in no time.
Yes the AVRs have limitations - but developing software for microcontrollers is largely about managing resources and coping with those problems. It's unlikely that you'll experience problems such as running out of stack space, RAM or ROM when you're making hobbist projects for powerful ARM platforms.
That said, ARM is also a great platform which is widely used in the industry, however, for learning I highly recommend AVRs.
I would suggest Microchip's PIC18F series. I just started developing for them with the RealICE in-circuit emulator, but the pickit2 is a decent debugger for the price. You could say this for the AVR's also, but there is a large following for the device all over the web. I was able to have a - buggy, yet functional - embedded USB device running within days due to all the PIC related chatter.
The only thing I don't like about the PICs is that a lot of the sample code is VERY entwined into the demo boards. That can make it hard to tear out sections that you need and still have an application that will build and run for your application.
Texas Instruments has released a very interesting development kit at a very low price: The eZ430-Chronos Development Tool contains an MSP430 with display and various sensors in a sports watch, including a usb debug programmer and a usb radio access point for 50$
There is also a wiki containing lots and lots of information.
I have already created a stackexchange proposal for the eZ430-Chronos Kit.
You should try and learn from developpers kits provided by Embedded Artists. After you get the kit, check their instructional videos and videos provided by NXP, which are not as detailed as they could be, but they cover a lot of things. Problems with learning ARM as your first architecture and try to do something practicall are:
You need to buy dev. kit.
You need a good book to learn ARM assembly, because sooner or later you will come across ARM startup code, which is quite a deal for a beginner. The book i mentioned allso covers some C programming.
Combine book mentioned above with a user guide for your speciffic processor like this one. Make sure you get this as studying this in combination with above book is the only way to learn your ARM proc. in detail.
If you want to make a transfer from ARM assembly to C programming you will need to read this book, which covers a different ARM processor but is easier for C beginner. The down side is that it doesn't explain any ARM assembly, but this is why you need the first book.
There is no easy way.
mikroElektronika has nice ARM boards and C, Pascal and Basic compilers that might suite your demands.