Saving managed object context creates deadlock in iOS 5's performBlock - objective-c

I've been looking for a solution for this problem for a long time and have yet reached one.
I'm developing an iOS app with core data. I've created two managed object contexts (MOC) which point to the same persistent store coordinator. One MOC (referred as self.moc) is initiated with main queue concurrency whereas the other mov (referred as self.bmoc) is initiated with private queue concurrency. I've made sure that self.moc only runs on the main thread and self.bmoc only runs within its performBlock or performBlockAndWait block.
However, I've encountered this strange situation where my app freezes on the [self.bmoc save:nil] line. Since the save action is executed within the performBlock block, I don't see a reason for it to reach a deadlock. Since it freezes on that line, I can't receive an error even if I use [self.bmoc save:&error] rather than nil.
Below is the code which will reproduce the problem. Although I have many functions similar to the one below, only this one creates the problem. I fail to figure the cause of the problem and any insight is greatly appreciated. Thank you!
-(void)createEmptyUserData {
[self.bmoc performBlock:^{
User* user = [NSEntityDescription insertNewObjectForEntityForName:#"User" inManagedObjectContext:self.bmoc];
/* sets user object */
[self.bmoc save:nil];
}];
}
Note: This piece of code is executed in main thread.

There are two basic reasons for you to get a "hang" in that situation.
You have a nested call to performBlockAndWait or some other synchronous thread/queue call.
One of your blocks is not returning, and running forever.
Both of these can be easily seen by looking at the stacks of each running thread at the time of the "hang."
performBlock simply takes the execution block and adds it to a queue, then it returns immediately. Some other thread is then popping execution blocks off the queue and executing them.
performBlockAndWait executes in the context of the calling thread. Basically, it waits for currently enqueued execution blocks to run, then it runs the requested code on the current thread.
It des not return until the call is complete.
So, I'd bet you either have multiple nested calls to performBlockAndWait OR one of your asynchronous execution blocks is not completing.
Look at the stack at the time of the hang...
Alternatively, log your block execution, so you can see when each block starts and exits.

Related

performSelector:OnThread:waitUntilDone not executing the selector all the time

I have an app where the network activity is done in its separate thread (and the network thread continuously gets data from the server and updates the display - the display calls are made back on the main thread). When the user logs out, the main thread calls a disconnect method on the network thread as follows:
[self performSelector:#selector(disconnectWithErrorOnNetworkThread:) onThread:nThread withObject:e waitUntilDone:YES];
This selector gets called most of the time and everything works fine. However, there are times (maybe 2 out of ten times) that this call never returns (in other words the selector never gets executed) and the thread and the app just hang. Anyone know why performSelector is behaving erratically?
Please note that I need to wait until the call gets executed, that's why waitUntilDone is YES, so changing that to NO is not an option for me. Also the network thread has its run loop running (I explicitly start it when the thread is created).
Please also note that due to the continuous nature of the data transfer, I need to explicitly use NSThreads and not GCD or Operations queues.
That'll hang if:
it is attempting to perform a selector on the same thread the method was called from
the call to perform the selector is to a thread from which a synchronous call was made that triggered the perform selector
When your program is hung, have a look at the backtraces of all threads.
Note that when implementing any kind of networking concurrency, it is generally really bad to have synchronous calls from the networking code into the UI layers or onto other threads. The networking thread needs to be very responsive and, thus, just like blocking the main thread is bad, anything that can block the networking thread is a bad, too.
Note also that some APIs with callbacks don't necessarily guarantee which thread the callback will be delivered on. This can lead to intermittent lockups, as described.
Finally, don't do any active polling. Your networking thread should be fully quiescent unless some event arrives. Any kind of looped polling is bad for battery life and responsiveness.

Difference between Main Queue / Current Queue & Main Thread / Background Thread in this case?

I'm executing the following method :
MotionHandler.m
-(void)startAccelerationUpdates
{
[motionManagerstartDeviceMotionUpdatesToQueue:[NSOperationQueue mainQueue]withHandler:^(CMDeviceMotion *motion, NSError *error){.....}
}
on a background thread, as follows:
[currentMotionHandler performSelectorInBackground:#selector(startAccelerationUpdates) withObject:nil];
But the above method uses the main Queue (which is on the main thread) to perform the necessary updates even though I'm calling it on a background thread.. So are acceleration updates being performed on a background thread or on the main thread, I'm confused..?
What's even more interesting is that when I call the above method on background thread again, but this time using the current Queue, I get no updates. Could someone please explain the difference between running something on :
1. a background thread but on the main queue
2. a background thread but on the current queue
3. the main thread but on the main queue
4. the main thread but on the current queue
in the current implementation? Thank you!
I'll give it a shot. First, without being told by the NSOperationQueue class reference, we could not infer anything about what thread the 'mainQueue' would run on. Reading it we see that in fact that queue runs its operations on the mainThread, the one the UI uses, so you can update the UI in operations posted to that queue. Although it doesn't say it, these operations must be serial, due to them being executed by the runLoop (its possible they can get preempted too, not 100% sure of that).
The purpose for currentQueue is so that running operations can determine the queue they are on, and so they can potentially queue new operations on that queue.
a background thread but on the main queue
Not possible - the NSOperation's mainQueue is always associated with the mainThread.
a background thread but on the current queue
When you create a NSOperationQueue, and add NSOperations to it, those get run on background threads managed by the queue. Any given operation can query what thread its on, and that thread won't change while it runs. That said, a second operation on that queue may get run on a different thread.
the main thread but on the main queue
See 1)
the main thread but on the current queue
If you queue an operation to the mainQueue (which we know is always on the mainThread), and you ask for the currentQueue, it will return the mainQueue:
[NSOperationQueue currentQueue] == [NSOperationQueue mainQueue];
You are confusing queues with threads. Especially since NSOpertionQueue has been rewritten to use GCD, there is little connection between queues and specific threads (except for the special case of the main thread).
Operations/blocks/tasks - whatever you want to call them - are inserted into a queue, and "worker thread(s)" pull these off and perform them. You have little control over which exact thread is going to do the work -- except for the main queue. Note, this is not exactly right, because it's a simplification, but it's true enough unless you are doing something quite advanced and specific.
So, none of your 4 scenarios even make sense, because you can't, for example, run something on "a background thread but on the main queue."
Now, your method startAccelerationUpdates specifically tells the CMMotionManager to put your handler on the main queue. Thus, when startAccelerationUpdates is called, it gets run in whichever thread it's running, but it schedules the handler to be executed on the main thread.
To somewhat complicate things, you are calling the startAccelerationUpdates method by calling performSelectorInBackground. Again, you don't know which thread is going to actually invoke startAccelerationUpdates, but it will not be the main thread.
However, in your case, all that thread is doing is calling startAccelerationUpdates which is starting motion updates, and telling them to be handled on the main thread (via the main queue).
Now, here's something to dissuade you from using the main queue to handle motion events, directly from the documentation...
Because the processed events might arrive at a high rate, using the main operation queue is not recommended.
Unfortunately, your statement
What's even more interesting is that when I call the above method on
background thread again, but this time using the current Queue, I get
no updates.
does not provide enough information to determine what you tried, how you tried it, or why you think it did not work. So, I'll make a guess... which may be wrong.
I'll key on your use of the current Queue.
I assume you mean that you substitute [NSOperationQueue mainQueue] with [NSOperationQueue currentQueue].
Well, let's see what that does. Instead of using the main queue, you will be using "some other" queue. Which one? Well, let's look at the documentation:
currentQueue
Returns the operation queue that launched the current
operation.
+ (id)currentQueue
Return Value
The operation queue that started the operation or nil if the queue could not be determined.
Discussion
You can use this method from within a running operation
object to get a reference to the operation queue that started it.
Calling this method from outside the context of a running operation
typically results in nil being returned.
Please note the discussion section. If you call this when you are not running an operation that was invoked from an NSOperationQueue, you will get nil which means there will be no queue on which to place your handler. So, you will get nothing.
You must specify which queue is to be used, if you want to use an NSOperationQueue other than the main queue. So, if that's the route you want to go, just create your own operation queue to handle motion events, and be off!
Good Luck!

Triggering via Asynchronous Callbacks

If an application executes a code block asynchronously and notifies the completion state in a callback, do these all leave execution on the main thread (the callback)?
What is the correct way to handle Core Graphics drawing and file operations in this callback?
I currently have these instructions running in the callback, but would like to trigger a thread to handle these instructions instead.
If you are doing any UI drawing, that has to be on the main thread. If you hvae these asynchronous blocks doing work now (ostensibly in a concurrent dispatch queue), why not just do all the work there, and when you have a finished product to show, only then message back on the main block. If your callback calls other methods in your class, the safest way to deal with concurrency is to define helper objects - small objects that take some input and product an output.
Create the helper, attach whatever data it needs, kick it off in a block on a queue, and when its done it messages back on the main thread that extracts the finished product, renders it, then deletes the helper object.
I dont have much experience in Core Graphics, but I've done a good amount of work on blocks.
In my opinion, if your application executes a code block asynchronously (on a new thread), then it's a good practice to the make callback or notification on the main thread.

Why can't we use a dispatch_sync on the current queue?

I ran into a scenario where I had a delegate callback which could occur on either the main thread or another thread, and I wouldn't know which until runtime (using StoreKit.framework).
I also had UI code that I needed to update in that callback which needed to happen before the function executed, so my initial thought was to have a function like this:
-(void) someDelegateCallback:(id) sender
{
dispatch_sync(dispatch_get_main_queue(), ^{
// ui update code here
});
// code here that depends upon the UI getting updated
}
That works great, when it is executed on the background thread. However, when executed on the main thread, the program comes to a deadlock.
That alone seems interesting to me, if I read the docs for dispatch_sync right, then I would expect it to just execute the block outright, not worrying about scheduling it into the runloop, as said here:
As an optimization, this function invokes the block on the current thread when possible.
But, that's not too big of a deal, it simply means a bit more typing, which lead me to this approach:
-(void) someDelegateCallBack:(id) sender
{
dispatch_block_t onMain = ^{
// update UI code here
};
if (dispatch_get_current_queue() == dispatch_get_main_queue())
onMain();
else
dispatch_sync(dispatch_get_main_queue(), onMain);
}
However, this seems a bit backwards. Was this a bug in the making of GCD, or is there something that I am missing in the docs?
dispatch_sync does two things:
queue a block
blocks the current thread until the block has finished running
Given that the main thread is a serial queue (which means it uses only one thread), if you run the following statement on the main queue:
dispatch_sync(dispatch_get_main_queue(), ^(){/*...*/});
the following events will happen:
dispatch_sync queues the block in the main queue.
dispatch_sync blocks the thread of the main queue until the block finishes executing.
dispatch_sync waits forever because the thread where the block is supposed to run is blocked.
The key to understanding this issue is that dispatch_sync does not execute blocks, it only queues them. Execution will happen on a future iteration of the run loop.
The following approach:
if (queueA == dispatch_get_current_queue()){
block();
} else {
dispatch_sync(queueA, block);
}
is perfectly fine, but be aware that it won't protect you from complex scenarios involving a hierarchy of queues. In such case, the current queue may be different than a previously blocked queue where you are trying to send your block. Example:
dispatch_sync(queueA, ^{
dispatch_sync(queueB, ^{
// dispatch_get_current_queue() is B, but A is blocked,
// so a dispatch_sync(A,b) will deadlock.
dispatch_sync(queueA, ^{
// some task
});
});
});
For complex cases, read/write key-value data in the dispatch queue:
dispatch_queue_t workerQ = dispatch_queue_create("com.meh.sometask", NULL);
dispatch_queue_t funnelQ = dispatch_queue_create("com.meh.funnel", NULL);
dispatch_set_target_queue(workerQ,funnelQ);
static int kKey;
// saves string "funnel" in funnelQ
CFStringRef tag = CFSTR("funnel");
dispatch_queue_set_specific(funnelQ,
&kKey,
(void*)tag,
(dispatch_function_t)CFRelease);
dispatch_sync(workerQ, ^{
// is funnelQ in the hierarchy of workerQ?
CFStringRef tag = dispatch_get_specific(&kKey);
if (tag){
dispatch_sync(funnelQ, ^{
// some task
});
} else {
// some task
}
});
Explanation:
I create a workerQ queue that points to a funnelQ queue. In real code this is useful if you have several “worker” queues and you want to resume/suspend all at once (which is achieved by resuming/updating their target funnelQ queue).
I may funnel my worker queues at any point in time, so to know if they are funneled or not, I tag funnelQ with the word "funnel".
Down the road I dispatch_sync something to workerQ, and for whatever reason I want to dispatch_sync to funnelQ, but avoiding a dispatch_sync to the current queue, so I check for the tag and act accordingly. Because the get walks up the hierarchy, the value won't be found in workerQ but it will be found in funnelQ. This is a way of finding out if any queue in the hierarchy is the one where we stored the value. And therefore, to prevent a dispatch_sync to the current queue.
If you are wondering about the functions that read/write context data, there are three:
dispatch_queue_set_specific: Write to a queue.
dispatch_queue_get_specific: Read from a queue.
dispatch_get_specific: Convenience function to read from the current queue.
The key is compared by pointer, and never dereferenced. The last parameter in the setter is a destructor to release the key.
If you are wondering about “pointing one queue to another”, it means exactly that. For example, I can point a queue A to the main queue, and it will cause all blocks in the queue A to run in the main queue (usually this is done for UI updates).
I found this in the documentation (last chapter):
Do not call the dispatch_sync function from a task that is executing
on the same queue that you pass to your function call. Doing so will
deadlock the queue. If you need to dispatch to the current queue, do
so asynchronously using the dispatch_async function.
Also, I followed the link that you provided and in the description of dispatch_sync I read this:
Calling this function and targeting the current queue results in deadlock.
So I don't think it's a problem with GCD, I think the only sensible approach is the one you invented after discovering the problem.
I know where your confusion comes from:
As an optimization, this function invokes the block on the current
thread when possible.
Careful, it says current thread.
Thread != Queue
A queue doesn't own a thread and a thread is not bound to a queue. There are threads and there are queues. Whenever a queue wants to run a block, it needs a thread but that won't always be the same thread. It just needs any thread for it (this may be a different one each time) and when it's done running blocks (for the moment), the same thread can now be used by a different queue.
The optimization this sentence talks about is about threads, not about queues. E.g. consider you have two serial queues, QueueA and QueueB and now you do the following:
dispatch_async(QueueA, ^{
someFunctionA(...);
dispatch_sync(QueueB, ^{
someFunctionB(...);
});
});
When QueueA runs the block, it will temporarily own a thread, any thread. someFunctionA(...) will execute on that thread. Now while doing the synchronous dispatch, QueueA cannot do anything else, it has to wait for the dispatch to finish. QueueB on the other hand, will also need a thread to run its block and execute someFunctionB(...). So either QueueA temporarily suspends its thread and QueueB uses some other thread to run the block or QueueA hands its thread over to QueueB (after all it won't need it anyway until the synchronous dispatch has finished) and QueueB directly uses the current thread of QueueA.
Needless to say that the last option is much faster as no thread switch is required. And this is the optimization the sentence talks about. So a dispatch_sync() to a different queue may not always cause a thread switch (different queue, maybe same thread).
But a dispatch_sync() still cannot happen to the same queue (same thread, yes, same queue, no). That's because a queue will execute block after block and when it currently executes a block, it won't execute another one until the currently executed is done. So it executes BlockA and BlockA does a dispatch_sync() of BlockB on the same queue. The queue won't run BlockB as long as it still runs BlockA, but running BlockA won't continue until BlockB has ran. See the problem? It's a classical deadlock.
The documentation clearly states that passing the current queue will cause a deadlock.
Now they don’t say why they designed things that way (except that it would actually take extra code to make it work), but I suspect the reason for doing things this way is because in this special case, blocks would be “jumping” the queue, i.e. in normal cases your block ends up running after all the other blocks on the queue have run but in this case it would run before.
This problem arises when you are trying to use GCD as a mutual exclusion mechanism, and this particular case is equivalent to using a recursive mutex. I don’t want to get into the argument about whether it’s better to use GCD or a traditional mutual exclusion API such as pthreads mutexes, or even whether it’s a good idea to use recursive mutexes; I’ll let others argue about that, but there is certainly a demand for this, particularly when it’s the main queue that you’re dealing with.
Personally, I think that dispatch_sync would be more useful if it supported this or if there was another function that provided the alternate behaviour. I would urge others that think so to file a bug report with Apple (as I have done, ID: 12668073).
You can write your own function to do the same, but it’s a bit of a hack:
// Like dispatch_sync but works on current queue
static inline void dispatch_synchronized (dispatch_queue_t queue,
dispatch_block_t block)
{
dispatch_queue_set_specific (queue, queue, (void *)1, NULL);
if (dispatch_get_specific (queue))
block ();
else
dispatch_sync (queue, block);
}
N.B. Previously, I had an example that used dispatch_get_current_queue() but that has now been deprecated.
Both dispatch_async and dispatch_sync perform push their action onto the desired queue. The action does not happen immediately; it happens on some future iteration of the run loop of the queue. The difference between dispatch_async and dispatch_sync is that dispatch_sync blocks the current queue until the action finishes.
Think about what happens when you execute something asynchronously on the current queue. Again, it does not happen immediately; it puts it in a FIFO queue, and it has to wait until after the current iteration of the run loop is done (and possibly also wait for other actions that were in the queue before you put this new action on).
Now you might ask, when performing an action on the current queue asynchronously, why not always just call the function directly, instead of wait until some future time. The answer is that there is a big difference between the two. A lot of times, you need to perform an action, but it needs to be performed after whatever side effects are performed by functions up the stack in the current iteration of the run loop; or you need to perform your action after some animation action that is already scheduled on the run loop, etc. That's why a lot of times you will see the code [obj performSelector:selector withObject:foo afterDelay:0] (yes, it's different from [obj performSelector:selector withObject:foo]).
As we said before, dispatch_sync is the same as dispatch_async, except that it blocks until the action is completed. So it's obvious why it would deadlock -- the block cannot execute until at least after the current iteration of the run loop is finished; but we are waiting for it to finish before continuing.
In theory it would be possible to make a special case for dispatch_sync for when it is the current thread, to execute it immediately. (Such a special case exists for performSelector:onThread:withObject:waitUntilDone:, when the thread is the current thread and waitUntilDone: is YES, it executes it immediately.) However, I guess Apple decided that it was better to have consistent behavior here regardless of queue.
Found from the following documentation.
https://developer.apple.com/library/ios/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html#//apple_ref/c/func/dispatch_sync
Unlike dispatch_async, "dispatch_sync" function does not return until the block has finished. Calling this function and targeting the current queue results in deadlock.
Unlike with dispatch_async, no retain is performed on the target queue. Because calls to this function are synchronous, it "borrows" the reference of the caller. Moreover, no Block_copy is performed on the block.
As an optimization, this function invokes the block on the current thread when possible.

CoreData Multithreading Proper Store Deletion

Ok, here's my situation:
I've got an app which requires a user-account.
While you're doing stuff like writing new comments, creating new Posts or reading a thread, every call to the server runs on a separate thread.
More specifically: A new thread is created, makes a call to the server, gets an answer from the server and saves the items from the answer to the Core Data Store.
In order to do this, every thread creates his own insertionContext, but they all share the same storeCoordinator.
But there's one Problem:
When someone does a logout from his account, I have to delete the store,
so if he logs in with another account, the stuff from the other account isn't in the coreDataStorage anymore.
But in Order to delete the Store, I have to make sure that there aren't any background Threads running anymore, because once they try to to save their stuff, they are sure to crash the app, since the store isn't valid anymore.
To clarify: these background threads are NSOperations which are put in an NSOperationQueue and executed from there.
Now CoreData gives the NSOperationQueue a function called "cancelAllOperations" but according to the Documentation, running Operations aren't killed, but only send a cancel message...
How do I use this cancel Message o_O
So far i'm checking at some points whether my thread is canceled and if it is, I don't execute other stuff, but if I do stuff like:
NSError *saveError = nil;
if(!self.isCanceled)
[insertionContext save:&saveError];
There is still the possibility that the Thread is being canceled between the if-check and the save.
So my question:
How do I handle this properly? Is it a question of properly canceling the thread?
I think you should not cancel any operations since it does not kill the thread immediately. Why don't you manage all operations that are currently being executed? This way you can postpone persistent store deletion until all tasks complete (or delete it immediately if there are no operations in progress).