I noticed that BigQuery no longer cache the same query even I have chosen to use cache in the GUI (both Alpha and Classic). I didn't edit the query at all, just keep clicking run query button and every time GUI executed the query without using cache results.
It happens to my PHP script as well. Before, it was enable to use cache and came back with results very quick and now it executes the query every time even the same query has been executed minutes ago. I can confirm the behaviour in the logs.
I am wondering if there is anything changed in the last few weeks? Or some kind of account level settings control this? Because it was working fine for me.
As per official docs here cache is disable when:
...any of the tables referenced by the query have recently received
streaming inserts...
Even if you are streaming to one partition, and then querying to another, this will invalidate caching functionality for the whole table. There is this feature request opened where it is requested to be able to hit cache when doing streaming inserts to one partition but querying a different partition.
EDIT***:
After some investigation I've found out that some months ago there was an issue going on which was allowing to hit the cache even streaming inserts were being made. This was not expected behavior, and therefore it got solved in May. I guess this is the change you have experienced and what you are talking about.
Docs have not changed related to this, and they aren't/weren't incorrect. Just the previous behavior was the incorrect one.
We have data stored in a data warehouse as follows:
Price
Date
Product Name (varchar(25))
We currently only have four products. That changes very infrequently (on average once every 10 years). Once every business day, four new data points are added representing the day's price for each product.
On the website, a user can request this information by entering a date range and selecting one or more products names. Analytics shows that the feature is not heavily used (about 10 users requests per week).
It was suggested that the data warehouse should daily push (SFTP) a CSV file containing all data (currently 6718 rows of this data and growing by four each day) to the web server. Then, the web server would read data from the file and display that data whenever a user made a request.
Usually, the push would only be once a day, but more than one push could be possible to communicate (infrequent) price corrections. Even in the price correction scenario, all data would be delivered in the file. What are problems with this approach?
Would it be better to have the web server make a request to the data warehouse per user request? Or does this have issues such as a greater chance for network errors or performance issues?
Would it be better to have the web server make a request to the data warehouse per user request?
Yes it would. You have very little data, so there is no need to try and 'cache' this in some way. (Apart from the fact that CSV might not be the best way to do this).
There is nothing stopping you from doing these requests from the webserver to the database server. With as little information as this you will not find performance an issue, but even if it would be when everything grows, there is a lot to be gained on the database-side (indexes etc) that will help you survive the next 100 years in this fashion.
The amount of requests from your users (also extremely small) does not need any special treatment, so again, direct query would be the best.
Or does this have issues such as a greater chance for network errors or performance issues?
Well, it might, but that would not justify your CSV method. Examples and why you need not worry, could be
the connection with the databaseserver is down.
This is an issue for both methods, but with only one connection per day the change of a 1-in-10000 failures might seem to be better for once-a-day methods. But these issues should not come up very often, and if they do, you should be able to handle them. (retry request, give a message to user). This is what enourmous amounts of websites do, so trust me if I say that this will not be an issue. Also, think of what it would mean if your daily update failed? That would present a bigger problem!
Performance issues
as said, this is due to the amount of data and requests, not a problem. And even if it becomes one, this is a problem you should be able to catch at a different level. Use a caching system (non CSV) on the database server. Use a caching system on the webserver. Fix your indexes to stop performance from being a problem.
BUT:
It is far from strange to want your data-warehouse separated from your web system. If this is a requirement, and it surely could be, the best thing you can do is re-create your warehouse-database (the one I just defended as being good enough to query directly) on another machine. You might get good results by doing a master-slave system
your datawarehouse is a master-database: it sends all changes to the slave but is inexcessible otherwise
your 2nd database (on your webserver even) gets all updates from the master, and is read-only. you can only query it for data
your webserver cannot connect to the datawarehouse, but can connect to your slave to read information. Even if there was an injection hack, it doesn't matter, as it is read-only.
Now you don't have a single moment where you update the queried database (the master-slave replication will keep it updated always), but no chance that the queries from the webserver put your warehouse in danger. profit!
I don't really see how SQL injection could be a real concern. I assume you have some calendar type field that the user fills in to get data out. If this is the only form just ensure that the only field that is in it is a date then something like DROP TABLE isn't possible. As for getting access to the database, that is another issue. However, a separate file with just the connection function should do fine in most cases so that a user can't, say open your webpage in an HTML viewer and see your database connection string.
As for the CSV, I would have to say querying a database per user, especially if it's only used ~10 times weekly would be much more efficient than the CSV. I just equate the CSV as overkill because again you only have ~10 users attempting to get some information, to export an updated CSV every day would be too much for such little pay off.
EDIT:
Also if an attack is a big concern, which that really depends on the nature of the business, the data being stored, and the visitors you receive, you could always create a backup as another option. I don't really see a reason for this as your question is currently stated, but it is a possibility that even with the best security an attack could happen. That mainly just depends on if the attackers want the information you have.
I want to use CollectD to gather some statistics (about storage) and have Graphite display them nicely. Apparently this can be done either by
having CollectD store the data as RRD files and pointing Graphite at
those, or
using a CollectD plugin to push the data to Graphite's Carbon API, which will store the data in a Whisper database (which is similar to RRD but not compatible).
I think I want to go with RRDs, but I found this statement in the Whisper docs that concerns me:
In many cases (depending on configuration) if an update is made to an
RRD series but is not followed up by another update soon, the original
update will be lost.
Hmmm. That's a bit scary, but the accusation is so vague that I don't know what to make of it. What is the configuration they are talking about, and the situation in which it causes data loss?
My situation is that the metrics data I am gathering will be available in chunks -- periodically I will go get the latest data and make as many entries into the database as there are new samples available. So, for example, I might grab some data and update the database with the values from 3 minutes ago, 2 minutes ago, and 1 minute ago, one right after the other. In fact, I might have dozens of new samples to put in the database at once. Does using RRD this way have anything to do with the Whisper accusation?
NOTE: I do not need to back-fill data; I will always be adding newer data than what has already been stored.
One scenario I see this happening would be if you have an AVERAGE RRA setup, and have the xxf value set to a low percentage. When the data is compressed over time, you could receive an unknown value and 'loose' all the data that was averaged. If you are using a RRD for what it was designed for, and have it setup with the proper type and settings, I wouldn't think you will run into a problem.
I would recommend taking an in depth look at the RRD documentation found HERE to answer questions about how RRD's and RRA's handle the data, and the different storage techniques that are available to you.
I'm considering MongoDB right now. Just so the goal is clear here is what needs to happen:
In my app, Finch (finchformac.com for details) I have thousands and thousands of entries per day for each user of what window they had open, the time they opened it, the time they closed it, and a tag if they choose one for it. I need this data to be backed up online so it can sync to their other Mac computers, etc.. I also need to be able to draw charts online from their data which means some complex queries hitting hundreds of thousands of records.
Right now I have tried using Ruby/Rails/Mongoid in with a JSON parser on the app side sending up data in increments of 10,000 records at a time, the data is processed to other collections with a background mapreduce job. But, this all seems to block and is ultimately too slow. What recommendations does (if anyone) have for how to go about this?
You've got a complex problem, which means you need to break it down into smaller, more easily solvable issues.
Problems (as I see it):
You've got an application which is collecting data. You just need to
store that data somewhere locally until it gets sync'd to the
server.
You've received the data on the server and now you need to shove it
into the database fast enough so that it doesn't slow down.
You've got to report on that data and this sounds hard and complex.
You probably want to write this as some sort of API, for simplicity (and since you've got loads of spare processing cycles on the clients) you'll want these chunks of data processed on the client side into JSON ready to import into the database. Once you've got JSON you don't need Mongoid (you just throw the JSON into the database directly). Also you probably don't need rails since you're just creating a simple API so stick with just Rack or Sinatra (possibly using something like Grape).
Now you need to solve the whole "this all seems to block and is ultimately too slow" issue. We've already removed Mongoid (so no need to convert from JSON -> Ruby Objects -> JSON) and Rails. Before we get onto doing a MapReduce on this data you need to ensure it's getting loaded into the database quickly enough. Chances are you should architect the whole thing so that your MapReduce supports your reporting functionality. For sync'ing of data you shouldn't need to do anything but pass the JSON around. If your data isn't writing into your DB fast enough you should consider Sharding your dataset. This will probably be done using some user-based key but you know your data schema better than I do. You need choose you sharding key so that when multiple users are sync'ing at the same time they will probably be using different servers.
Once you've solved Problems 1 and 2 you need to work on your Reporting. This is probably supported by your MapReduce functions inside Mongo. My first comment on this part, is to make sure you're running at least Mongo 2.0. In that release 10gen sped up MapReduce (my tests indicate that it is substantially faster than 1.8). Other than this you can can achieve further increases by Sharding and directing reads to the the Secondary servers in your Replica set (you are using a Replica set?). If this still isn't working consider structuring your schema to support your reporting functionality. This lets you use more cycles on your clients to do work rather than loading your servers. But this optimisation should be left until after you've proven that conventional approaches won't work.
I hope that wall of text helps somewhat. Good luck!
I have a multi-user application that keeps a centralized logfile for activity. Right now, that logging is going into text files to the tune of about 10MB-50MB / day. The text files are rotated daily by the logger, and we keep the past 4 or 5 days worth. Older than that is of no interest to us.
They're read rarely: either when developing the application for error messages, diagnostic messages, or when the application is in production to do triage on a user-reported problem or a bug.
(This is strictly an application log. Security logging is kept elsewhere.)
But when they are read, they're a pain in the ass. Grepping 10MB text files is no fun even with Perl: the fields (transaction ID, user ID, etc..) in the file are useful, but just text. Messages are written sequentially, one like at a time, so interleaved activity is all mixed up when trying to follow a particular transaction or user.
I'm looking for thoughts on the topic. Anyone done application-level logging with an SQL database and liked it? Hated it?
I think that logging directly to a database is usually a bad idea, and I would avoid it.
The main reason is this: a good log will be most useful when you can use it to debug your application post-mortem, once the error has already occurred and you can't reproduce it. To be able to do that, you need to make sure that the logging itself is reliable. And to make any system reliable, a good start is to keep it simple.
So having a simple file-based log with just a few lines of code (open file, append line, close file or keep it opened, repeat...) will usually be more reliable and useful in the future, when you really need it to work.
On the other hand, logging successfully to an SQL server will require that a lot more components work correctly, and there will be a lot more possible error situations where you won't be able to log the information you need, simply because the log infrastructure itself won't be working. And something worst: a failure in the log procedure (like a database corruption or a deadlock) will probably affect the performance of the application, and then you'll have a situation where a secondary component prevents the application of performing it's primary function.
If you need to do a lot of analysis of the logs and you are not comfortable using text-based tools like grep, then keep the logs in text files, and periodically import them to an SQL database. If the SQL fails you won't loose any log information, and it won't even affect the application's ability to function. Then you can do all the data analysis in the DB.
I think those are the main reasons why I don't do logging to a database, although I have done it in the past. Hope it helps.
We used a Log Database at my last job, and it was great.
We had stored procedures that would spit out overviews of general system health for different metrics that I could load from a web page. We could also quickly spit out a trace for a given app over a given period, and if I wanted it was easy to get that as a text file, if you really just like grep-ing files.
To ensure the logging system does not itself become a problem, there is of course a common code framework we used among different apps that handled writing to the log table. Part of that framework included also logging to a file, in case the problem is with the database itself, and part of it involves cycling the logs. As for the space issues, the log database is on a different backup schedule, and it's really not an issue. Space (not-backed-up) is cheap.
I think that addresses most of the concerns expressed elsewhere. It's all a matter of implementation. But if I stopped here it would still be a case of "not much worse", and that's a bad reason to go the trouble of setting up DB logging. What I liked about this is that it allowed us to do some new things that would be much harder to do with flat files.
There were four main improvements over files. The first is the system overviews I've already mentioned. The second, and imo most important, was a check to see if any app was missing messages where we would normally expect to find them. That kind of thing is near-impossible to spot in traditional file logging unless you spend a lot of time each day reviewing mind-numbing logs for apps that just tell you everything's okay 99% of the time. It's amazing how freeing the view to show missing log entries is. Most days we didn't need to look at most of the log files at all... something that would be dangerous and irresponsible without the database.
That brings up the third improvement. We generated a single daily status e-mail, and it was the only thing we needed to review on days that everything ran normally. The e-mail included showed errors and warnings. Missing logs were re-logged as warning by the same db job that sends the e-mail, and missing the e-mail was a big deal. We could send forward a particular log message to our bug tracker with one click, right from within the daily e-mail (it was html-formatted, pulled data from a web app).
The final improvement was that if we did want to follow a specific app more closely, say after making a change, we could subscribe to an RSS feed for that specific application until we were satisfied. It's harder to do that from a text file.
Where I'm at now, we rely a lot more on third party tools and their logging abilities, and that means going back to a lot more manual review. I really miss the DB, and I'm contemplated writing a tool to read those logs and re-log them into a DB to get these abilities back.
Again, we did this with text files as a fallback, and it's the new abilities that really make the database worthwhile. If all you're gonna do is write to a DB and try to use it the same way you did the old text files, it adds unnecessary complexity and you may as well just use the old text files. It's the ability to build out the system for new features that makes it worthwhile.
yeah, we do it here, and I can't stand it. One problem we have here is if there is a problem with the db (connection, corrupted etc), all logging stops. My other big problem with it is that it's difficult to look through to trace problems. We also have problems here with the table logs taking up too much space, and having to worry about truncating them when we move databases because our logs are so large.
I think its clunky compared to log files. I find it difficult to see the "big picture" with it being stored in the database. I'll admit I'm a log file person, I like being able to open a text file and look through (regex) it instead of using sql to try and search for something.
The last place I worked we had log files of 100 meg plus. They're a little difficult to open, but if you have the right tool it's not that bad. We had a system to log messages too. You could quickly look at the file and determine which set of log entries belonged which process.
We've used SQL Server centralized logging before, and as the previous posted mentioned, the biggest problem was that interrupted connectivity to the database would mean interrupted logging. I actually ended up adding a queuing routine to the logging that would try the DB first, and write to a physical file if it failed. You'd just have to add code to that routine that, on a successful log to the db, would check to see if any other entries are queued locally, and write those too.
I like having everything in a DB, as opposed to physical log files, but just because I like parsing it with reports I've written.
I think the problem you have with logging could be solved with logging to SQL, provided that you are able to split out the fields you are interested in, into different columns. You can't treat the SQL database like a text field and expect it to be better, it won't.
Once you get everything you're interested in logging to the columns you want it in, it's much easier to track the sequential actions of something by being able to isolate it by column. Like if you had an "entry" process, you log everything normally with the text "entry process" being put into the "logtype" column or "process" column. Then when you have problems with the "entry process", a WHERE statement on that column isolates all entry processes.
we do it in our organization in large volumes with SQL Server. In my openion writing to database is better because of the search and filter capability. Performance wise 10 to 50 MB worth of data and keeping it only for 5 days, does not affect your application. Tracking transaction and users will be very easy compare to tracking it from text file since you can filter by transaction or user.
You are mentioning that the files read rarely. So, decide if is it worth putting time in development effort to develop the logging framework? Calculate your time spent on searching the logs from log files in a year vs the time it will take to code and test. If the time spending is 1 hour or more a day to search logs it is better to dump logs in to database. Which can drastically reduce time spend on solving issues.
If you spend less than an hour then you can use some text search tools like "SRSearch", which is a great tool that I used, searches from multiple files in a folder and gives you the results in small snippts ("like google search result"), where you click to open the file with the result interested. There are other Text search tools available too. If the environment is windows, then you have Microsoft LogParser also a good tool available for free where you can query your file like a database if the file is written in a specific format.
Here are some additional pros and cons and the reason why I prefer log files instead of databases:
Space is not that cheap when using VPS's. Recovering space on live database systems is often a huge hassle and you might have to shut down services while recovering space. If your logs is so important that you have to keep them for years (like we do) then this is a real problem. Remember that most databases does not recover space when you delete data as it simply re-uses the space - not much help if you are actually running out of space.
If you access the logs fequently and you have to pull daily reports from a database with one huge log table and millions and millions of records then you will impact the performance of your database services while querying the data from the database.
Log files can be created and older logs archived daily. Depending on the type of logs massive amounts of space can be recovered by archiving logs. We save around 6x the space when we compress our logs and in most cases you'll probably save much more.
Individual smaller log files can be compressed and transferred easily without impacting the server. Previously we had logs ranging in the 100's of GB's worth of data in a database. Moving such large databases between servers becomes a major hassle, especially due to the fact that you have to shut down the database server while doing so. What I'm saying is that maintenance becomes a real pain the day you have to start moving large databases around.
Writing to log files in general are a lot faster than writing to DB. Don't underestimate the speed of your operating system file IO.
Log files only suck if you don't structure your logs properly. You may have to use additional tools and you may even have to develop your own to help process them, but in the end it will be worth it.
You could log to a comma or tab delimited text format, or enable your logs to be exported to a CSV format. When you need to read from a log export your CSV file to a table on your SQL server then you can query with standard SQL statements. To automate the process you could use SQL Integration Services.
I've been reading all the answers and they're great. But in a company I worked due to several restrictions and audit it was mandatory to log into a database. Anyway, we had several ways to log and the solution was to install a pipeline where our programmers could connect to the pipeline and log into database, file, console, or even forwarding log to a port to be consumed by another applications.
This pipeline doesn't interrupt the normal process and keeping a log file at the same time you log into the database ensures you rarely lose a line.
I suggest you investigate further log4net that it's great for this.
http://logging.apache.org/log4net/
I could see it working well, provided you had the capability to filter what needs to be logged and when it needs to be logged. A log file (or table, such as it is) is useless if you can't find what you're looking for or contains unnecessary information.
Since your logs are read rarely, I would write them on file (better performance and reliability).
Then, if and only if you need to read them, I would import the log file in a data base (better analysis).
Doing so, you get the advantages of both methods.