Why in interface why not in abstract class - oop

I know that the access specifier visibility of the overridden method/property must be the same or above as that of the base method/property and I also know that the visibility of members of interfaces is public by default. So how and why can the visibility of the members be private when we implement the interface explicitly in a class though those private methods can be accessed by casting the class object to the implemented interface?
public interface IRocker
{
string RockOff(string str);
}
public abstract class AmAbstract
{
public abstract string SomeMethod(string str);
}
class Program : AmAbstract, IRocker
{
static void Main(string[] args)
{
new Hello().RockU();
Console.ReadKey();
}
string IRocker.RockOff(string str)
{
return str;
}
public override string SomeMethod(string str)
{
return str;
}
}
public class Hello
{
public void RockU()
{
Console.WriteLine(((IRocker)(new Program())).RockOff("Damn"));
Console.WriteLine(((AmAbstract)(new Program())).SomeMethod("lalalalala"));
}
}
'Console.WriteLine(((IRocker)(new Program())).RockOff("Damn"));' statement shows us ultimately accessing a private method of the class 'Program'. My question is why we can't hide the visibility of an abstract method as we can with an interface method? And why we are able to access private method through interface? Any help will be highly appreciated.

You are using explicit interface implementation when implementing IRocker.RockOff(). There are separate rules for those in C#, and in fact these are kind of private and public at the same time.
A quote from paragraph 13.4.1 of the C# 4.0 specification:
Explicit interface member implementations have different accessibility characteristics than other members. Because explicit interface member implementations are never accessible through their fully qualified name in a method invocation or a property access, they are in a sense private. However, since they can be accessed through an interface instance, they are in a sense also public.
Explicit interface member implementations serve two primary purposes:
Because explicit interface member implementations are not accessible through class or struct instances, they allow interface implementations to be excluded from the public interface of a class or struct. This is particularly useful when a class or struct implements an internal interface that is of no interest to a consumer of that class or struct.
Explicit interface member implementations allow disambiguation of interface members with the same signature. Without explicit interface member implementations it would be impossible for a class or struct to have different implementations of interface members with the same signature and return type, as would it be impossible for a class or struct to have any implementation at all of interface members with the same signature but with different return types.
There are no such exceptions for abstract classes, so just the regular modifier rules apply.

Related

Benefit of non-empty method of non-abstract class and abstract method of abstract method?

I don't understand why we use abstract method (abstract class) while we can use empty method of non-abstract class and then we override it. Does it sound fine? I am seeking to clarify this issue.
I give 2 examples
public abstract class MyClass {public abstract void foo();}
public MyChildClass extends MyClass {public void foo() {//..TODO}}
public class MyClass {public void foo(){//empty}}
public class MyChildClass extends MyClass {public void foo() {//..TODO}}
Which one is better?
I'll start by saying that you should try to use interfaces instead of abstract classes. Abstract classes couple the subclass to the implementation of the superclass. In a language like Java, the subclass can override any method even if the superclass did not intend to do so, and most people don't qualify their methods with "do not override" all the time.
At the lowest level, abstract methods give you two concrete protections at compile time:
They force you to override the method in a subclass
They disallow the creation of the abstract class
Before listing the use cases for abstract methods, I'll just say that "common functionality" is NOT a good reason for an abstract base class. If you need common functionality, just create a class that has the common methods, and let the various classes call these functions as they see fit.
So when would you use an abstract class? Here are some examples:
Template Method
In the template method pattern, you have all of your functionality, but there's just one internal aspect that's polymorphic, so you have subclasses that override that particular aspect.
For example, if you're implementing a cache, but the cache invalidation policy is polymorphic, you may have an abstract invalidate() method that is called internally by other methods, but it's up to subclasses to implement invalidate().
If there is a preferred default cache invalidation policy, then invalidate() could implement that default. But if that default is downright destructive in some cases, then it shouldn't be a default - it should be abstract, and the code that creates the cache should be forced to explicitly choose the invalidation policy.
This can also be achieved by passing an Invalidator class to the constructor (Strategy pattern), but if the invalidation logic needs to call methods of the cache, it's better to make those method protected and call them from a subclass (i.e. Template Method pattern).
Default implementation of other methods
In languages where interfaces cannot have default methods (e.g. Java 7), you can emulate it using abstract classes. All the interface methods will be abstract, but the default methods would be regular public methods.
Common Interface and Functionality
This is just a more generic version of the template method pattern. The difference is that the polymorphic methods are part of the API.
If your common functionality has a lot of overlap with the functionality you want to expose, and you don't want mountains of boilerplate code, you use an abstract class. For example:
interface File {
abstract Buffer read(int size);
abstract void write(Buffer buf);
abstract long getSize();
abstract void setSize();
// ... get/set creation time, get/set modification time, get
// file type etc.
abstract long getOwner();
abstract void setOwner(long owner);
}
abstract class AbstractFile extends File {
DataMap dataMap;
MetadataMap metaMap;
protected getDiskMap() { return dataMap; }
protected getMetaMap() { return metaMap; }
public Buffer read(int size) { /* loop here */ }
public void write(Buffer buf) { /* loop here */ }
public long getSize() { /* logic */ }
public void setSize() { /* logic */ }
// ... implementation of get/set creation time, get/set modification
// time, get file type etc.
}
abstract class HardDriveFile extends AbstractFile {
OwnershipMap ownerMap;
abstract long getOwner() { /* logic */ }
abstract void setOwner(long owner) { /* logic */ }
}
abstract class ThumbDriveFile extends AbstractFile {
// thumb drives have no ownership
abstract long getOwner() { return 0; }
abstract void setOwner(long owner) { /* no-op */ }
}
abstract class SomeOtherfile extends AbstractFile {
...
}
If we cut the middleman and have HardDriveFile and ThumbDriveFile (and possibly other types of files) implement File and spell out all the common methods, each calling a method of some common class, we would get mountains and mountains of boilerplate. So we inherit from an abstract base class, that has the abstract methods we want to specialize (e.g. based on the existence of an ownership map).
The naive thing to do would be to combine File and AbstractFile into a single class, which is where you'd get the abstract methods getOwner() and setOwner(), but it's better to hide abstract classes behind actual interfaces, to prevent the coupling between consumers of an API and the abstract class.

VB.NET access level of interface declaration not matching access level of implementation [duplicate]

Interface behaves differently in Vb.Net. Below is a sample code snippet where IStudent interface has a method SayHello which is implemented by a class Student. The Access modifier for SayHello should be Public by default. By changing Access modifier to Private is not breaking the existing code and still i can access this private method using below code
Dim stdnt As IStudent = New Student
stdnt.SayHello()
Access modifier determines the scope of the members in a class, more over private members are accessible only from the class which exists. But here the theory of Access Modifier, Encapsulation are broken.
Why .net has designed in this way?
Is the concept of Access modifier and encapsulation are really broken?
How .net framework internally handle this situation?
Thanks in advance
Module Module1
Sub Main()
Dim stdnt As IStudent = New Student
stdnt.Name = "vimal"
stdnt.SayHello()
End Sub
End Module
Public Interface IStudent
Property Name As String
Sub SayHello()
End Interface
Public Class Student
Implements IStudent
Private Property Name As String Implements IStudent.Name
Private Sub SayHello() Implements IStudent.SayHello
Console.WriteLine("Say Hello!")
End Sub
End Class
The original poster submitted this question to me via TheBugGuys#Coverity.com; my answer is here:
https://communities.coverity.com/blogs/development-testing-blog/2013/10/09/oct-9-posting-interface-behaves-differently-in-visual-basic
To briefly summarize:
Why was .NET designed in this way?
That question is impossibly vague.
Is encapsulation broken by explicit implementation in C# and VB?
No. The privacy of the method restricts the accessibility domain of the methods name, not who can call the method. If the author of the class chooses to make a private method callable by some mechanism other than looking it up by name, that is their choice. A third party cannot make the choice for them except via techniques such as private reflection, which do break encapsulation.
How is this feature implemented in .NET?
There is a special metadata table for explicit interface implementations. The CLR consults it first when attempting to figure out which class (or struct) method is associated with which interface method.
From MSDN:
You can use a private member to implement an interface member. When a private member implements a member of an interface, that member becomes available by way of the interface even though it is not available directly on object variables for the class.
In C#, this behaviour is achieved by implementing the interface explicitly, like this:
public interface IStudent {
string Name { get; set; }
void SayHello();
}
public class Student : IStudent {
string IStudent.Name { get; set; }
void IStudent.SayHello() {
Console.WriteLine("Say Hello!");
}
}
So, if you were to omit the IStudent. in front of the method names, it would break. I see that in the VB syntax the interface name is included. I don't know whether this has any implications altough. But interface members aren't private, since the interface isn't. They're kinda public...
There is no fundamental difference between C# and VB.NET, they just chose different ways to solve ambiguity. Best demonstrated with a C# snippet:
interface ICowboy {
void Draw();
}
interface IPainter {
void Draw();
}
class CowboyPainter : ICowboy, IPainter {
void ICowboy.Draw() { useGun(); }
void IPainter.Draw() { useBrush(); }
// etc...
}
VB.NET just chose consistent interface implementation syntax so the programmer doesn't have to weigh the differences between implicit and explicit implementation syntax. Simply always explicit in VB.NET.
Only the accessibility of the interface method matters. Always public.
When your variable stdnt is declared as IStudent, the interface methods and properties are then made Public, so the derived class' (Student) implementation is executed. If, on the other hand, if stdnt was declared as Student, the private members (Name and SayHello) would not be implemented, and an error would be thrown.
I'm guessing that the Interface members stubs (Name & SayHello) are by default Public, and the access modifier definitions of the derived class' implementation are ignored.
IMHO.
The exact equivalent in C# is the following - the method available to objects of the interface type and the private method available otherwise:
void IStudent.SayHello()
{
this.SayHello();
}
private void SayHello()
{
Console.WriteLine("Say Hello!");
}

Interface behavior is dfferent in VB.Net

Interface behaves differently in Vb.Net. Below is a sample code snippet where IStudent interface has a method SayHello which is implemented by a class Student. The Access modifier for SayHello should be Public by default. By changing Access modifier to Private is not breaking the existing code and still i can access this private method using below code
Dim stdnt As IStudent = New Student
stdnt.SayHello()
Access modifier determines the scope of the members in a class, more over private members are accessible only from the class which exists. But here the theory of Access Modifier, Encapsulation are broken.
Why .net has designed in this way?
Is the concept of Access modifier and encapsulation are really broken?
How .net framework internally handle this situation?
Thanks in advance
Module Module1
Sub Main()
Dim stdnt As IStudent = New Student
stdnt.Name = "vimal"
stdnt.SayHello()
End Sub
End Module
Public Interface IStudent
Property Name As String
Sub SayHello()
End Interface
Public Class Student
Implements IStudent
Private Property Name As String Implements IStudent.Name
Private Sub SayHello() Implements IStudent.SayHello
Console.WriteLine("Say Hello!")
End Sub
End Class
The original poster submitted this question to me via TheBugGuys#Coverity.com; my answer is here:
https://communities.coverity.com/blogs/development-testing-blog/2013/10/09/oct-9-posting-interface-behaves-differently-in-visual-basic
To briefly summarize:
Why was .NET designed in this way?
That question is impossibly vague.
Is encapsulation broken by explicit implementation in C# and VB?
No. The privacy of the method restricts the accessibility domain of the methods name, not who can call the method. If the author of the class chooses to make a private method callable by some mechanism other than looking it up by name, that is their choice. A third party cannot make the choice for them except via techniques such as private reflection, which do break encapsulation.
How is this feature implemented in .NET?
There is a special metadata table for explicit interface implementations. The CLR consults it first when attempting to figure out which class (or struct) method is associated with which interface method.
From MSDN:
You can use a private member to implement an interface member. When a private member implements a member of an interface, that member becomes available by way of the interface even though it is not available directly on object variables for the class.
In C#, this behaviour is achieved by implementing the interface explicitly, like this:
public interface IStudent {
string Name { get; set; }
void SayHello();
}
public class Student : IStudent {
string IStudent.Name { get; set; }
void IStudent.SayHello() {
Console.WriteLine("Say Hello!");
}
}
So, if you were to omit the IStudent. in front of the method names, it would break. I see that in the VB syntax the interface name is included. I don't know whether this has any implications altough. But interface members aren't private, since the interface isn't. They're kinda public...
There is no fundamental difference between C# and VB.NET, they just chose different ways to solve ambiguity. Best demonstrated with a C# snippet:
interface ICowboy {
void Draw();
}
interface IPainter {
void Draw();
}
class CowboyPainter : ICowboy, IPainter {
void ICowboy.Draw() { useGun(); }
void IPainter.Draw() { useBrush(); }
// etc...
}
VB.NET just chose consistent interface implementation syntax so the programmer doesn't have to weigh the differences between implicit and explicit implementation syntax. Simply always explicit in VB.NET.
Only the accessibility of the interface method matters. Always public.
When your variable stdnt is declared as IStudent, the interface methods and properties are then made Public, so the derived class' (Student) implementation is executed. If, on the other hand, if stdnt was declared as Student, the private members (Name and SayHello) would not be implemented, and an error would be thrown.
I'm guessing that the Interface members stubs (Name & SayHello) are by default Public, and the access modifier definitions of the derived class' implementation are ignored.
IMHO.
The exact equivalent in C# is the following - the method available to objects of the interface type and the private method available otherwise:
void IStudent.SayHello()
{
this.SayHello();
}
private void SayHello()
{
Console.WriteLine("Say Hello!");
}

In Object oriented programming when do we need abstraction?

I read many posts about the "Interface" and "Abstract Class"
Basically, we use "Abstract Class" when we talking about the characteristic of the Object.
And we use "Interface" when we taling about what the object capable can do.
But it still confuse so I make up an example for myself to practice.
so now I thinking of a Object 'Cargo;
public abstract class cargo {
protected int id;
public abstract int getWidth(int width);
public abstract int setWidth(int width);
public abstract int setHeight(int h);
public abstract int getHeight(int h);
public abstract int setDepth(int d);
public abstract int getDepth(int d);
public abstract int volume(int w,int h,int d);
public int getId(){
return this.id;
}
public abstract int setId();
public abstract void setBrand();
public abstract void getBrand( );
.....so on , still have a lot of characteristic of a cargo
}
//in the other class
public class usaCargo extends cargo{
....
private
}
So here is few Question about my design.
1.So in the real programming project world, are we actually doing like above? for me i think it's ok design, we meet the basic characteristic of cargo.
if we setup "private id" , then we actually can't use "id" this variable in any subclass because it's private, so is that mean every variable we defined in abstract class must be either public/ protected?
can someone give some suitable example so my cargo can implement some interface?
public interface registration{
public void lastWarrantyCheck();
}
But seems not suitable here...
we dont usually define variable inside interface, do we ??
I try to gain more sense on OOP . Forgive my long questions.
You would define variables in the Abstract class so that methods defined in the abstract class have variables to use. The scope of those variables depend on how you want concrete classes to access those variables:
private should be used when you want to force a concrete class to go through a getter or setter defined in the abstract class.
protected should be used when you want to give the concrete class direct access to the variable.
public should be used when you want the variable to be accessible by any class.
A reasonable interface that a Cargo object might implement could be Shippable as in how to move the cargo from a source to a destination. Some cargo may be shipped via freight train, some might be shippable by airplane, etc. It is up to the concrete class to implement Shippable and define just how that type of cargo would be shipped.
public interface Shippable {
public void ship();
}
Lastly a variable defined in an interface must be public static and final meaning it would be a constant variable.
Hope this clears it up for you!
Abstract classes can contain implementation, so they can have private variables and methods. Interfaces on the other hand cannot.
You can find some examples on how to implement interfaces here. However, I included how you would implement your registration example below.
public class Cargo implements Registration{
public void lastWarrantyCheck(){
System.out.println("Last warranty check");
}
}
Interface variables are possible, but they should only include constant declarations (variable declarations that are declared to be both static and final). More information about this can be found here.
Variables in an abstract class may be declared as protected, and they will only be available within it and any extending classes. Private variables are never accessible inside extending classes.
Interfaces provide a list of functions that are required by the classes that implement them. For example, you might use an interface hasWarranty to define all the functions that an object would need to handle warranty-related activities.
public interface hasWarranty {
public void lastWarrantyCheck();
public void checkWarranty();
}
Then, any objects that need to perform warranty-related activities should implement that interface:
// Disclaimer: been away from Java for a long time, so please interpret as pseudo-code.
// Will compile
public class Car implements hasWarranty {
public void lastWarrantyCheck() {
... need to have this exact function or program won't compile ...
}
public void checkWarranty() {
... need to have this exact function or program won't compile ...
}
}
// Missing one of the required functions defined in hasWarranty
public class Bus implements hasWarranty {
public void lastWarrantyCheck() {
... need to have this exact function or program won't compile ...
}
}
Only constants, really, as variables declared in an interface are immutable and are shared by all objects that implement that interface. They are implicitly "static final".

Abstract class and methods

i have Abstract class
Public class Abstract baseClass
{
public abstract string GetString();
public abstract string GetString1();
}
public class DerivedClass : baseClass
{
public override string GetString()
{
return "test data";
}
public override string GetString1()
{
throw new NotImplementedException();
}
}
In above line of code, i have to implement both abstract method in derived class. But due to some reason i don't want to implement all methods, just one of them like GetString() only. How can it be done?
Thanks
If DerivedClass is going to offer common functionality to other classes, you can mark it as abstract, implement one of the methods here, and then inheritors will only have to implement the remaining method.
If you aren't going to support the other method in a given implementation, you still have to expose the method in your class, but similar to what you have here, you would typically throw a NotSupportedException. For void methods, you could simply return (do nothing).
Finally, if you want to separate out the things that have both methods and those that have only one, you can use interfaces.
public interface IBase
{
string GetString();
}
public interface IBasePlus : IBase
{
string GetStringPlus();
}
You can have one class that implements IBasePlus, but you can supply this to methods that take a parameter of type IBase, in which case you won't see the extra method.
Generally, if you don't implement all the abstract methods then your new class is also an abstract class. To get a concrete class, you need all the methods to be implemented. If you only want/need to implement a subset of the methods, consider using multiple interfaces (one interface with GetString and another with GetString1) rather than an abstract class. Then you can just implement the interfaces with the methods you want to use in the class.
Take the abstract keyword off the other method and provide a default implementation in the base class