Virtual methods in classes - oop

I am trying to make a simple extendable class and then extend it and then place the instances of the extended classes into a variable and then call the extended classes overriden methods. In other languages this is known as virtual methods. I am unable to find any information about this in Haxe.
class Shape
{
public virtual function DrawShape(): Void {}
}
class Triangle extends Shape
{
public virtual function DrawShape(): Void { printf("Triangle"); }
}
class Square extends Shape
{
public virtual function DrawShape(): Void { printf("Square"); }
}
//usage
var myShape : Shape;
//As Triangle
myShape = new Triangle();
myShape.DrawShape(); //outputs Triangle, even though it is type Shape variable
//As Square
myShape = new Square();
myShape.DrawShape(); //outputs Square, even though it is type Shape variable
So, if anyonw knows how to do this in Haxe please help. Thanks.

virtual == override in Haxe language

Try
interface IShape
{
function drawShape () : Void;
}
class Tri implements IShape
{
public function drawShape () : Void { return "Tri"; }
}
class Square implements IShape
{
public function drawShape () : Void { return "Square"; }
}

Related

Is it ok to override a virtual method but provide no implementation?

I'm trying to create a class heirachy for a game, there is an Item class which is the base class for all items in the game. The problem is that some derived items (like potion) might not implement some of the abstract methods defined by the item.
Is it ok for derived classes to implement an abstract method with "do nothing"?
Example: https://dotnetfiddle.net/jJABN1
using System;
using System.Collections.Generic;
public abstract class Item
{
public abstract void Use();
}
public class Potion : Item
{
public override void Use()
{
// do nothing
return;
}
}
public class Sword : Item
{
public override void Use()
{
Console.WriteLine("Sword used!");
return;
}
}
public class Program
{
public static void Main()
{
List<Item> items = new List<Item>();
Item potion = new Potion();
Item sword = new Sword();
items.Add(potion);
items.Add(sword);
for (int i = 0; i < items.Count; i++)
{
Item item = items[i];
item.Use();
}
}
}
One of Robert Martin's SOLID Principles - Interface Segregation Principle addresses this situation. It basically says that a client should not be exposed to methods it doesn't need.
An example of violating the Interface Segregation Principle:
// Abstraction
public abstract class Printer
{
public abstract void Print();
public abstract void Scan();
}
// Implementations
public class SomeAllInOnePrinter : Printer
{
public override void Print()
{
Console.WriteLine("Printing...");
}
public override void Scan()
{
Console.WriteLine("Scanning...");
}
}
public class SomeBasicPrinter : Printer
{
public override void Print()
{
Console.WriteLine("Printing...");
}
public override void Scan()
{
// Basic printers can't scan
}
}
This is usually solved by separating an abstract class to multiple smaller abstract classes that can optionally inherit one other:
// Abstractions
public abstract class Printer
{
public abstract void Print();
}
public abstract class AllInOnePrinter : Printer
{
public abstract void Scan();
}
// Implementations
public class SomeAllInOnePrinter : AllInOnePrinter
{
public override void Print()
{
Console.WriteLine("Printing...");
}
public override void Scan()
{
Console.WriteLine("Scanning...");
}
}
public class SomeBasicPrinter : Printer
{
public override void Print()
{
Console.WriteLine("Printing...");
}
}
Technically, there could be an edge-case (should be uncommon!) where a deriving class doesn't need to implement all the methods, in such a case I'd rather it to override and throw an error to signal the user that this method should not be used.
That said, in the provided example there is only one method, so the question is: if a derived class doesn't need this method - why do you need to inherit the abstract class to begin with? if it's just in order to provide an example that's understandable - but better improve the example to include other methods that are used in the derived class.

How do I simulate an abstract class and call its constructor?

I'm trying to follow along with a C# design patterns book by writing my code in TypeScript. Perhaps this is my first mistake, but it's a way I enjoy to learn a language.
TypeScript doesn't support the abstract keyword for classes, so I am trying to simulate it. Maybe this is my second mistake.
Here is my interface and classes:
interface IEngine {
getSize(): number;
getTurbo(): boolean;
}
class AbstractEngine implements IEngine {
constructor(private size: number, private turbo: boolean) {
throw "Abstract class";
}
public getSize(): number {
return this.size;
}
public getTurbo(): boolean {
return this.turbo;
}
public toString(): string {
var funcNameRegex = /function (.{1,})\(/;
var results = (funcNameRegex).exec(this.constructor.toString());
var className = (results && results.length > 1) ? results[1] : '';
return className + " (" + this.size + ")";
}
}
class StandardEngine extends AbstractEngine {
constructor(size: number) {
// not turbo charged
super(size, false);
}
}
When trying to instantiate an AbstractEngine with new AbstractEngine(1, true) I get an "Abstract class" error as expected.
When trying to instantiate a StandardEngine with new StandardEngine(9000) I also get an "Abstract class" error.
Is there a way I can simulate an abstract class in TypeScript, have it unable to be instantiated, but still call super in a class that extends it? And what about simulating abstract methods, can I protect those and still call the super method?
As of today, TypeScript 1.6 is live and has support for the abstract keyword.
abstract class A {
foo(): number { return this.bar(); }
abstract bar(): number;
}
var a = new A(); // error, Cannot create an instance of the abstract class 'A'
class B extends A {
bar() { return 1; }
}
var b = new b(); // success, all abstracts are defined
I advise you not to do that. When the TypeScript compiler will implement a mechanism for abstract function, it is time to use it. But hacks that work at runtime are incomprehensible and degrade performance.
The interfaces are the great strength of TypeScript. They should be used massively.
Your example should be written like this:
interface Engine {
getSize(): number;
getTurbo(): boolean;
}
class StandardEngine implements Engine {
constructor(private size: number, private turbo: boolean) {
}
public getSize(): number {
return this.size;
}
public getTurbo(): boolean {
return this.turbo;
}
}
The simplest solution is often the best.
If you want to reuse code without a parent class which would then necessarily usable, the Handbook suggests Mixins. Mixins are a way of coping skills from several distinct entities.
Or with modules it is possible to keep private implementation (and therefore organize it as you want it) and export only interfaces and factories. An example:
module MyEngineModule {
export interface Engine {
getSize(): number;
getTurbo(): boolean;
}
export interface StandardEngine extends Engine {
}
export function makeStandardEngine(size: number, turbo: boolean): StandardEngine {
return new ImplStandardEngine(size, turbo);
}
// here classes are private and can inherit or use mixins…
class ImplEngine {
constructor(private size: number, private turbo: boolean) {
}
public getSize(): number {
return this.size;
}
public getTurbo(): boolean {
return this.turbo;
}
}
class ImplStandardEngine extends ImplEngine implements StandardEngine {
}
}
console.log(MyEngineModule.makeStandardEngine(123, true).getSize());
When calling the StandardEngine constructor, you have a call to super(size, false). This call into the base class is what is generating the second "Abstract class" error.
To simulate an abstract base class that will throw when instantiated, create an Init function that is called from your derived class.
class AbstractEngine implements IEngine {
private _size: number;
private _turbo: boolean;
constructor() {
throw "Abstract class";
}
init(size:number, turbo: boolean) {
this._size = size;
this._turbo = turbo;
}
}
class StandardEngine extends AbstractEngine {
constructor(size: number) {
// not turbo charged
// do not call super here
init(size, false);
}
}
An alternative solution would be to user a property that if set indicates that the constructor is being called from a child class it is safe to continue. This is shown below :
class AbstractEngine {
safe; // IMPORTANT : do not initialize
constructor(private size: number, private turbo: boolean) {
if(!this.safe) throw "Abstract class"; // IMPORTANT
}
}
class StandardEngine extends AbstractEngine {
constructor(size: number) {
this.safe = true; // IMPORTANT
super(size, false);
}
}

Adding State in Decorator Pattern

I wonder how to add state to the chain of decorators that will be available to the consumer. Given this simplified model:
abstract class AbstractPizza
{
public abstract print(...);
}
class Pizza : AbstractPizza
{
public int Size { get; set; }
public print(...);
}
abstract class AbstractPizzaDecorator
{
public Pizza:AbstractPizza;
public abstract print();
}
class HotPizzaDecorator : AbstractPizzaDecorator
{
public int Hotness { get; set; }
public print(...);
}
class CheesyPizzaDecorator : AbstractPizzaDecorator
{
public string Cheese { get; set; }
public print(...);
}
void Main()
{
BigPizza = new Pizza();
BigPizza.Size = 36;
HotBigPizza = new HotPizzaDecorator();
HotBigPizza.Pizza = BigPizza;
HotBigPizza.Hotness = 3;
HotBigCheesyPizza = new CheesyPizzaDecorator();
HotBigCheesyPizza.Pizza = HotBigPizza;
HotBigCheesyPizza.Cheese = "Blue";
HotBigCheesyPizza.print();
HotBigCheesyPizza.size = 28; // ERRRRRR !
}
Now if they all implement the print method and propagate that though the chain, it's all good. But how does that work for the state? I can't access the size property on the HotBigCheesyPizza.
What's the part that I'm missing? Wrong pattern?
Thanks for helping!
Cheers
The decorator pattern is for adding additional behavior to the decorated class without the client needing to adjust. Thus it is not intended for adding a new interface (e.g. hotness, cheese) to the thing being decorated.
A somewhat bad example of what it might be used for is where you want to change how size is calculated: you could create a MetricSizePizzaDecorator that converts the size to/from English/metric units. The client would not know the pizza has been decorated - it just calls getSize() and does whatever it needs to do with the result (for example, to calculate the price).
I would probably not use the decorator in my example, but the point is: it does not alter the interface. In fact, nearly all design patterns come down to that - adding variability to a design without changing interfaces.
one way of adding state is by using a self referential data structure (a list). but this uses the visitor pattern and does more than you probably want. this code is rewritten from A little Java, a few patterns
// a self referential data structure with different types of nodes
abstract class Pie
{
abstract Object accept(PieVisitor ask);
}
class Bottom extends Pie
{
Object accept(PieVisitor ask) { return ask.forBottom(this); }
public String toString() { return "crust"; }
}
class Topping extends Pie
{
Object topping;
Pie rest;
Topping(Object topping,Pie rest) { this.topping=topping; this.rest=rest; }
Object accept(PieVisitor ask) { return ask.forTopping(this); }
public String toString() { return topping+" "+rest.toString(); }
}
//a class to manage the data structure
interface PieManager
{
int addTopping(Object t);
int removeTopping(Object t);
int substituteTopping(Object n,Object o);
int occursTopping(Object o);
}
class APieManager implements PieManager
{
Pie p=new Bottom();
// note: any object that implements a rational version of equal() will work
public int addTopping(Object t)
{
p=new Topping(t,p);
return occursTopping(t);
}
public int removeTopping(Object t)
{
p=(Pie)p.accept(new RemoveVisitor(t));
return occursTopping(t);
}
public int substituteTopping(Object n,Object o)
{
p=(Pie)p.accept(new SubstituteVisitor(n,o));
return occursTopping(n);
}
public int occursTopping(Object o)
{
return ((Integer)p.accept(new OccursVisitor(o))).intValue();
}
public String toString() { return p.toString(); }
}
//these are the visitors
interface PieVisitor
{
Object forBottom(Bottom that);
Object forTopping(Topping that);
}
class OccursVisitor implements PieVisitor
{
Object a;
OccursVisitor(Object a) { this.a=a; }
public Object forBottom(Bottom that) { return new Integer(0); }
public Object forTopping(Topping that)
{
if(that.topping.equals(a))
return new Integer(((Integer)(that.rest.accept(this))).intValue()+1);
else return that.rest.accept(this);
}
}
class SubstituteVisitor implements PieVisitor
{
Object n,o;
SubstituteVisitor(Object n,Object o) { this.n=n; this.o=o; }
public Object forBottom(Bottom that) { return that; }
public Object forTopping(Topping that)
{
if(o.equals(that.topping))
that.topping=n;
that.rest.accept(this);
return that;
}
}
class RemoveVisitor implements PieVisitor
{
Object o;
RemoveVisitor(Object o) { this.o=o; }
public Object forBottom(Bottom that) { return new Bottom(); }
public Object forTopping(Topping that)
{
if(o.equals(that.topping))
return that.rest.accept(this);
else return new Topping(that.topping,(Pie)that.rest.accept(this));
}
}
public class TestVisitor
{
public static void main(String[] args)
{
// make a PieManager
PieManager pieManager=new APieManager();
// add some toppings
pieManager.addTopping(new Float(1.2));
pieManager.addTopping(new String("cheese"));
pieManager.addTopping(new String("onions"));
pieManager.addTopping(new String("cheese"));
pieManager.addTopping(new String("onions"));
pieManager.addTopping(new String("peperoni"));
System.out.println("pieManager="+pieManager);
// substitute anchovies for onions
int n=pieManager.substituteTopping(new String("anchovies"),new String("onions"));
System.out.println(n+" pieManager="+pieManager);
// remove the 1.2's
n=pieManager.removeTopping(new Float(1.2));
System.out.println(n+" pieManager="+pieManager);
// how many anchovies do we have?
System.out.println(pieManager.occursTopping(new String("anchovies"))+" anchovies");
}
}
I believe your component Pizza and your abstract decorator PizzaDecorator are supposed to share the same interface, that way each instance of the decorator is capable of the same operations as the core component Pizza.

How to design around lack of multiple inheritance?

Using interfaces won't work because I want a single implementation. Using this solution would end in a lot of redundant code because I plan on having quite a few sub classes (composition vs inheritance). I've decided that a problem-specific design solution is what I'm looking for, and I can't think of anything elegant.
Basically I want classes to have separate properties, and for those properties to be attached at design time to any sub class I choose. Say, I have class 'ninja'. I would like to be able to make arbitrary sub classes such as 'grayNinja' where a gray ninja will always have a sword and throwing stars. Then possibly 'redNinja' who will always have a sword and a cape. Obviously swords, stars, and capes will each have their own implementation - and this is where I can't use interfaces. The closest solution I could find was the decorator pattern, but I don't want that functionality at runtime. Is the best solution an offshoot of that? Where inside the Black Ninja class constructor, I pass it through the constructors of sword and throwingStar? (those being abstract classes)
haven't coded in a while and reading hasn't gotten me too far - forgive me if the answer is simple.
Edit: Answered my own question. I can't mark it as 'answer' until tomorrow. Please let me know if there's a problem with it that I didn't catch. All the reading this problem forced me to do has been awesome. Learned quite a bit.
You want classes to have separate properties. Have you considered coding exactly that?
For example, you want a RedNinja that is-a Ninja that has-a sword and cape. Okay, so define Ninja to have an inventory, make it accessible through Ninja, and pass in an inventory through RedNinja's constructor. You can do the same thing for behaviors.
I've done once a similar app. with a earlier "C++" compiler that supported only single inheritance and no interfaces, at all.
// base class for all ninjas
public class Ninja {
// default constructor
public Ninja() { ... }
// default destructor
public ~Ninja() { ... }
} // class
public class StarNinja: public Ninja {
// default constructor
public StarNinja() { ... }
// default destructor
public ~StarNinja() { ... }
public void throwStars() { ... }
} // class
public class KatannaNinja: public Ninja {
// default constructor
public KatannaNinja() { ... }
// default destructor
public ~KatannaNinja() { ... }
public void useKatanna() { ... }
} // class
public class InvisibleNinja: public Ninja {
// default constructor
public InvisibleNinja() { ... }
// default destructor
public ~InvisibleNinja() { ... }
public void becomeVisible() { ... }
public void becomeInvisible() { ... }
} // class
public class FlyNinja: public Ninja {
// default constructor
public FlyNinja() { ... }
// default destructor
public ~FlyNinja() { ... }
public void fly() { ... }
public void land() { ... }
} // class
public class InvincibleNinja: public Ninja {
// default constructor
public InvincibleNinja() { ... }
// default destructor
public ~InvincibleNinja() { ... }
public void turnToStone() { ... }
public void turnToHuman() { ... }
} // class
// --> this doesn't need to have the same superclass,
// --> but, it helps
public class SuperNinja: public Ninja {
StarNinja* LeftArm;
InvincibleNinja* RightArm;
FlyNinja* LeftLeg;
KatannaNinja* RightLeg;
InvisibleNinja* Body;
// default constructor
public SuperNinja() {
// -> there is no rule to call composed classes,
LeftArm = new StarNinja();
RightArm = new InvincibleNinja();
LeftLeg = new FlyNinja();
RightLeg = new KatannaNinja();
Body = new InvisibleNinja();
}
// default destructor
public ~SuperNinja() {
// -> there is no rule to call composed classes
delete LeftArm();
delete RightArm();
delete LeftLeg();
delete RightLeg();
delete Body();
}
// --> add all public methods from peers,
// --> to main class
public void throwStars() { LeftArm->throwStars(); }
public void useKatanna() { RightLeg->useKatanna(); }
public void becomeVisible() { Body->becomeVisible() }
public void becomeInvisible() { Body->becomeInvisible() }
public void fly() { LeftLeg->fly() }
public void land() { LeftLeg->land() }
public void turnToStone() { RightArm->turnToStone(); }
public void turnToHuman() { RightArm->turnToHuman(); }
} // class
Im afraid, that the most close example is the composition design pattern. In order, to become more similar to inheritance, I make a generic base class that all composite classes share, and I make a main class that will be the result of the multiple inheritance, that has a copy of all the public methods of the component classes.
If you want to use interfaces, to enforce that main class have all important methods,
then make an interface that matches each composing class, and implemented in the main class.
public interface INinja {
public void NinjaScream() { ... }
} // class
public interface IStarNinja {
void throwStars();
} // class
public interface IKatannaNinja {
void useKatanna();
} // class
public interface IInvisibleNinja {
void becomeVisible();
void becomeInvisible();
} // class
public interface CFlyNinja {
void fly();
void land();
} // class
public interface IInvincibleNinja {
void turnToStone() { ... }
void turnToHuman() { ... }
} // class
// base class for all ninjas
public class CNinja: public INinja {
// default constructor
public CNinja() { ... }
// default destructor
public ~CNinja() { ... }
public void NinjaScream() { ... }
} // class
public class CStarNinja: public CNinja, INinja {
// default constructor
public CStarNinja() { ... }
// default destructor
public ~CStarNinja() { ... }
public void NinjaScream() { ... }
public void throwStars() { ... }
} // class
public class CKatannaNinja: public CNinja, IKatannaNinja {
// default constructor
public CKatannaNinja() { ... }
// default destructor
public ~CKatannaNinja() { ... }
public void NinjaScream() { ... }
public void useKatanna() { ... }
} // class
public class CInvisibleNinja: public CNinja, IInvisibleNinja {
// default constructor
public CInvisibleNinja() { ... }
// default destructor
public ~CInvisibleNinja() { ... }
public void becomeVisible() { ... }
public void becomeInvisible() { ... }
} // class
public class CFlyNinja: public CNinja, IFlyNinja {
// default constructor
public CFlyNinja() { ... }
// default destructor
public ~CFlyNinja() { ... }
public void fly() { ... }
public void land() { ... }
} // class
public class CInvincibleNinja: public CNinja, IInvincibleNinja {
// default constructor
public CInvincibleNinja() { ... }
// default destructor
public ~CInvincibleNinja() { ... }
public void turnToStone() { ... }
public void turnToHuman() { ... }
} // class
// --> this doesn't need to have the same superclass,
// --> but, it helps
public class CSuperNinja: public CNinja,
IKatannaNinja,
IInvisibleNinja,
IFlyNinja,
IInvincibleNinja
{
CStarNinja* LeftArm;
CInvincibleNinja* RightArm;
CFlyNinja* LeftLeg;
CKatannaNinja* RightLeg;
CInvisibleNinja* Body;
// default constructor
public CSuperNinja() {
// -> there is no rule to call composed classes
LeftArm = new CStarNinja();
RightArm = new CInvincibleNinja();
LeftLeg = new CFlyNinja();
RightLeg = new CKatannaNinja();
Body = new CInvisibleNinja();
}
// default destructor
public ~SuperNinja() {
// -> there is no rule to call composed classes
delete LeftArm();
delete RightArm();
delete LeftLeg();
delete RightLeg();
delete Body();
}
// --> add all public methods from peers,
// --> to main class
public void throwStars() { LeftArm->throwStars(); }
public void useKatanna() { RightLeg->useKatanna(); }
public void becomeVisible() { Body->becomeVisible() }
public void becomeInvisible() { Body->becomeInvisible() }
public void fly() { LeftLeg->fly() }
public void land() { LeftLeg->land() }
public void turnToStone() { RightArm->turnToStone(); }
public void turnToHuman() { RightArm->turnToHuman(); }
} // class
I know this solution is complex, but, seems that there is not another way.
Cheers.
Alright so mix-ins through extension methods are going to be my preferred route. I couldn't figure out how to use dynamic proxies in vb.net (seemed to require libraries with lots of documentation that didn't cover specifically what I needed). Dynamic proxies also seems to be a bit dirtier of a solution than using extension methods. Composition would have been what I defaulted to if the previous two didn't work.
So one problem with extension methods, is that the code gets a little dirtier if you want to hold variables. Not much though. Another problem is that all the extension methods must be defined in modules, so the code might look a little goofy to a new eye. I will solve this by defining my interface and module with the corresponding extension method in the same file.
finally, here's some sample vb.net code if you don't want to see a full fledged example through the link.
Imports System.Runtime.CompilerServices 'for extension methods
Public Interface ISword
End Interface
Public Interface IThrowingStar
End Interface
Module ExtensionMethods
<Extension()>
Public Sub swingSword(ByVal hasASword As ISword)
Console.WriteLine("Sword has been swung")
End Sub
<Extension()>
Public Sub throwStar(ByVal hasAStar As IThrowingStar)
Console.WriteLine("Star has been thrown")
End Sub
End Module
Public Class RedNinja
Inherits Ninja
Implements IThrowingStar, ISword
Public Sub New()
End Sub
End Class
Public MustInherit Class Ninja
private curHealth as Integer
Public Sub New()
curHealth = 100
End Sub
Public Function getHP() As Integer
Return curHealth
End Function
End Class
Module Module1
Sub main()
Console.WriteLine("Type any character to continue.")
Console.ReadKey()
Dim a As New RedNinja
a.swingSword() 'prints "Sword has been swung"
a.throwStar() 'prints "Star has been thrown"
Console.WriteLine("End of program - Type any key to exit")
Console.ReadKey()
End Sub
End Module
Dirty solution, if you simply must have multiple inheritance, is using something like dynamic proxies in Java.
But I guess you're probably programming in C#, and this is language agnostic question, so here goes language agnostic answer: check out composite and factory design patterns, that should give you some ideas.
Also, it might not be needed to pass everything in constructor. Check out IoC pattern as well.

Is frequent downcasting in class hierarchy always evil?

From what I`ve learned, it is no good if you frequently use downcasting in class hierarchies.
I agree with that, but what are exceptions from this rule if any?
This is where my design of graphical editor shows thin: I have two hierarchies, where geometric figures hierarchy decoupled from graphic primitives one. Like this:
public class GeometricPrimitive {...}
public class RectangeGeometric: Geometric Primitive {...}
public class GraphicPrimitive {...}
public class Rectangle: GraphicPrimitive {
private RectangleGeometric figure;
...
}
So, every concrete graphic figure class encapsulates instance of concrete geometry class. Is that approach is the right one, or should I prefer more generical one? - unfortunately, downcasting would be used in this case:
public class GraphicPrimitive {
protected GeometryPrimitive figure;
....
}
public class Rectangle: GraohicPrimitive {
public Rectangle(Color c, TwoDPoint leftHighPoint, TwoDPoint rightLowPoint):
base(new RectangleGeometric(leftHighPoint.Point2D, rightLowPoint.Point2D), c) { }
#region Geometric Properties
public TwoDPoint LeftTopCorner {
get { return new TwoDPoint(base.color, (base.figure as RectangleGeometric).LeftTopCorner); }
}
public TwoDPoint RightBottomCorner {
get { return new TwoDPoint(base.color, (base.figure as RectangleGeometric).RightBottomCorner); }
}
While your question lacks some of the larger context about your application that would help with giving a specific answer, I'll try by giving you some ideas of how I would implement this using your code for inspiration.
I would start by inverting the relationship GeometryPrimitive and GraphicPrimitive. I see the the GeometryPrimitive hierarchy as the domain objects that make up your abstract scene graph and the GraphicPrimitive hierarchy as low level view components that translate a GeometryPrimitive into a set of pixels appropriate for drawing onto some kind of graphics context. The GeometryPrimitive subclasses hold all the state information necessary to describe themselves but no logic for translating that description into pixels. The GraphicPrimitive subclasses have all the pixel pushing logic, but no internal state. In effect, the GraphicPrimitive hierarchy represents a hierarchy of Command Objects.
In the GeometryPrimitive base class, include an abstract method called GetGraphicPrimitive(). In the GraphicPrimitive base class include an abstract method called Draw(Graphics g).
Within each GeometryPrimitive, include the appropriate GraphicPrimitive for drawing the object and an accessor method for accessing it. To draw the entire scene, walk your structure of GeometryPrimitive objects, asking each one for its GraphicPrimitive and then invoking the Draw() method.
abstract class GeometryPrimitive
{
public abstract GraphicsPrimitive GetGraphicsPrimitive();
}
abstract class GraphicsPrimitive
{
public abstract void Draw(Graphics g);
}
class RectangleGeometryPrimitive : GeometryPrimitive
{
public Point TopLeft {get; set;}
public Point BottomRight {get; set;}
private RectangleGraphicPrimitive gp;
public RectanglePrimitive(Point topLeft, Point bottomRight);
{
this.TopLeft = topLeft;
this.BottomRight = bottomRight;
this.gp = new RectangleGraphicsPrimitive(this);
}
public GraphicsPrimitive GetGraphicsPrimitive()
{
return gp;
}
}
class RectangleGraphicsPrimitive : GraphicsPrimitive
{
private RectangleGeometryPrimitive p;
public RectangleGraphicsPrimitive(RectangleGeometryPrimitive p)
{
this.p = p;
}
public void Draw(Graphics g)
{
g.DrawRectangle(p.TopLeft, p.BottomRight);
}
}
class CircleGeometryPrimitive : GeometryPrimitive
{
public Point Center {get; set;}
public int Radius {get; set;}
private CircleGraphicPrimitive gp;
public RectanglePrimitive(Point center, int radius);
{
this.Center = center;
this.Radius = radius;
this.gp = new CircleGraphicsPrimitive(this);
}
public GraphicsPrimitive GetGraphicsPrimitive()
{
return gp;
}
}
class CircleGraphicsPrimitive : GraphicsPrimitive
{
private CircleGeometryPrimitive p;
public CircleGraphicsPrimitive(CircleGeometryPrimitive p)
{
this.p = p;
}
public void Draw(Graphics g)
{
g.DrawCircle(p.Center, p.Radius);
}
}
As you can see above, no downcasting is required to draw GeometryPrimitives to the screen. With proper use of inheritance, you can also share GraphicsPrimitive objects between different GeometryPrimitives. For example, SquareGeometryPrimitive and RectangleGeometryPrimitive can both use RectangleGraphicsPrimitive if SquareGeometryPrimitive derives from RectangleGeometryPrimitive.
You don't give many details, so I can't really give my opinion about whether it is adequate to have the two hierarchies. We all know the costs of this parallelism, but only you can evaluate the advantages ...
I don't know your programming language. But a common solution to avoid the downcasting you mention, is to have a base class using parameterized types (called generics or templating). This works in Java, C++ and many modern languages.
The idea is that the precise type of the field base.figure is determined by each subclass. What you know in the base class is that it is a subtype T of GeometryPrimitive. In each subclass, you defined the precise type RectangleGeometric that replaces the T, so within this subclass the type is precise.
Java example:
public GraphicPrimitive<T extends GeometryPrimitive> {
protected T figure;
}
public Rectangle extends GraohicPrimitive<RectangleGeometric> {
// It appears in this class that the field was defined as
//protected RectangleGeometric figure;
public TwoDPoint getLeftTopCorner {
return new TwoDPoint(base.color, figure.LeftTopCorner);
}
}