Why does the Authorization line change for every firefox request? - apache

When running with Kerberos tickets, I have noticed that every firefox request has a different Authorization line in the HTTP header. I loaded a simple page, then hit the reload button several times and it was never the same. What causes this behavior? I would have thought that the Authorization line would stay constant for the duration of the Kerberos credentials. (Note that I got the credentials via the kinit command before firing up firefox.)
When the authentication method is Basic, then firefox continues to send the same base64 string of 'user:password' every time. This is the behavior I expected.
Any ideas?

mmm it is odd. Any chance that you can post snipptes of the wireshark output. One possibility is that the Service Ticket obtained is not cached and FF gets a service ticket. There have been implementations where a client will get a service but not cache it, instead go and get a service ticket every time needed. Sometimes it is because the process may not have write permissions and it is relatively an inexpensive operation ( a single round trip and symmetric encrypted data)

This is due to various limitations in both HTTP and in how Negotiate-Auth works.
HTTP was originally designed as a stateless protocol, and HTTP's authentication system assumes that model. It was designed to do a full authentication exchange in each request; for example, with Basic, it's enclosing your full credentials in each request. With Negotiate-Auth and SPNEGO, the same thing is true: a brand new GSS-API context is created and a fresh authentication is performed with each request.
Yes, this is very wasteful. But there (currently) isn't any standardized way to authenticate once, establish a session, and then bind all subsequent requests to that session (the way that, say, IMAP, POP, or ssh does). There is some IETF work in this direction, but it's very preliminary.
The ticket is cached; it's not doing that much work each time. But the server and the client go through the whole GSS-API session dance each time.

Related

CouchDB Proxy Authentication security - user roles confusion

On user auth success my auth server generates a token and passes it to the client.
The docs say that the client has to add the following headers:
X-Auth-CouchDB-UserName: username;
X-Auth-CouchDB-Roles:comma-separated (,) list of user roles;
X-Auth-CouchDB-Token: authentication token.
Does it mean that the client defines his own roles on every request? Why can't he add 'admin' into the list of roles then?
A client is anything that uses or requests resources from a server.
"The client" in this case is your proxy/auth server, not a web browser. (The documentation could probably stand to be clarified a bit.)
So yes, your proxy/auth server, the client to CouchDB, should set that header as appropriate.
By extension, it should also not pass through any X-Auth-Couch headers received from its client (presumably a web browser).
Good observation. Using the JWT Authentication would seem to close this loophole as my understanding is the entire token is signed-over.
That said, in neither case can one avoid:
having to fully trust the entity holding the secret
having to carefully guard against leakage of its headers
The former is sort of unavoidable, as the point of these plugins is to delegate authentication. Either you trust the proxy (or JWT issuer) or you leave those authentication_handlers disabled.
The latter is something that e.g. OAuth 1 hardened itself somewhat against, in that ± the entire request was signed over and one couldn't simply take a couple auth headers from an earlier leaked request and slap them on a new forged request. Nonce and timestamp fields were supposed to be checked to avoid verbatim replays of prior requests as well. (All this was dropped in OAuth 2 for whatever that's worth… and even OAuth 1 had some notable loopholes in practice…)
So in practice either the Proxy or the JWT authentication handlers should be used with care. Assuming a "firewall" of sorts drawn around both your CouchDB and authentication source, then as #Flimzy's answer mentions preventing unexpected headers making their way inwards from outside that boundary — as well as keeping the real headers from leaking outwards — should mitigate most potential abuse.

Securing the API exposed in chrome extension

Current State :
I am working on a chrome extension. My extension makes a request to my web-server and shows the results fetched.
Disadvantages :
I am exposing my APIs, so any third-party , not necessarily, owner of the extension may make a number of requests on my server. This will allow him access to all my data
This can also lead to my server crash, if the requests are made very frequently via bots.
So, is there any way that can authorize that requests made to the corresponding server handles are via the chrome extension only. Can it be done by setting some cookie and checking them before sending results ?
Thanks !
No, you can not ensure that only your Chrome extension is making the requests. Once your code leaves your control (i.e. the client has it), there is no guarantee that it isn't tampered with or reverse engineered. What you can do though, is make the user log in before accessing your API.
By authenticating, you aren't verifying that the user is using your Chrome extension, but you do have someone to blacklist if your server becomes the subject of large traffic. You can have the user of the chrome extension create an account one time and then the extension can send those credentials to your server with each request.
You may be tempted to try things like embedding a secret token or passphrase, but this will only stop the lazy attackers. Furthermore it may give you a false sense of security. Go with authentication if you are worried about Denial of Service attacks.

Authentication, Authorization and Session Management in Traditional Web Apps and APIs

Correct me if I am wrong: In a traditional web application, the browser automatically appends session information into a request to the server, so the server can know who the request comes from. What exactly is appended actually?
However, in a API based app, this information is not sent automatically, so when developing an API, I must check myself if the request comes from an authenticated user for example? How is this normally done?
HTTP Protocol is stateless by design, each request is done separately and is executed in a separate context.
The idea behind session management is to put requests from the same client in the same context. This is done by issuing an identifier by the server and sending it to the client, then the client would save this identifier and resend it in subsequent requests so the server can identify it.
Cookies
In a typical browser-server case; the browser manages a list of key/value pairs, known as cookies, for each domain:
Cookies can be managed by the server (created/modified/deleted) using the Set-Cookie HTTP response header.
Cookies can be accessed by the server (read) by parsing the Cookie HTTP request header.
Web-targeted programming languages/frameworks provide functions to deal with cookies on a higher level, for example, PHP provides setcookie/$_COOKIE to write/read cookies.
Sessions
Back to sessions, In a typical browser-server case (again), server-side session management takes advantage of client-side cookie management. PHP's session management sets a session id cookie and use it to identify subsequent requests.
Web applications API?
Now back to your question; since you'd be the one responsible for designing the API and documenting it, the implementation would be your decision. You basically have to
give the client an identifier, be it via a Set-Cookie HTTP response header, inside the response body (XML/JSON auth response).
have a mechanism to maintain identifier/client association. for example a database table that associates identifier 00112233445566778899aabbccddeeff with client/user #1337.
have the client resend the identifier sent to it at (1.) in all subsequent requests, be it in an HTTP Cookie request header, a ?sid=00112233445566778899aabbccddeeff param(*).
lookup the received identifier, using the mechanism at (2.), check if a valid authentication, and is authorized to do requested operation, and then proceed with the operation on behalf on the auth'd user.
Of course you can build upon existing infrastructure, you can use PHP's session management (that would take care of 1./2. and the authentication part of 4.) in your app, and require that client-side implementation do cookie management(that would take care of 3.), and then you do the rest of your app logic upon that.
(*) Each approach has cons and pros, for example, using a GET request param is easier to implement, but may have security implications, since GET requests are logged. You should use https for critical (all?) applications.
The session management is server responsibility. When session is created, a session token is generated and sent to the client (and stored in a cookie). After that, in the next requests between client and server, the client sends the token (usually) as an HTTP cookie. All session data is stored on the server, the client only stores the token. For example, to start a session in PHP you just need to:
session_start(); // Will create a cookie named PHPSESSID with the session token
After the session is created you can save data on it. For example, if you want to keep a user logged:
// If username and password match, you can just save the user id on the session
$_SESSION['userID'] = 123;
Now you are able to check whether a user is authenticated or not:
if ($_SESSION['userID'])
echo 'user is authenticated';
else
echo 'user isn't authenticated';
If you want, you can create a session only for an authenticated user:
if (verifyAccountInformation($user,$pass)){ // Check user credentials
// Will create a cookie named PHPSESSID with the session token
session_start();
$_SESSION['userID'] = 123;
}
There are numerous way for authentic users, both for Web applications and APIs. There are couple of standards, or you can write your own custom authorization / and or authentication. I would like to point out difference between authorization and authentication. First, application needs to authenticate user(or api client) that request is coming from. Once user has been authenticated, based on user's identity application needs to determine whatever authenticated user has permission to perform certain application (authorization). For the most of traditional web applications, there is no fine granularity in security model, so once the user is authenticated, it's in most cases also and authorized to perform certain action. However, this two concepts (authentication and authorization) should be as two different logical operations.
Further more, in classical web applications, after user has been authenticated and authorized
(mostly by looking up username/password pair in database), authorization and identity info is written in session storage. Session storage does not have to be server side, as most of the answers above suggest, it could also be stored in cookie on client side, encrypted in most cases. For an example, PHP CodeIgniter framework does this by default. There is number of mechanism for protecting session on client side, and I don't see this way of storing session data any less secure than storing sessionId, which is then looked up in session storage on server-side. Also, storing session client-side is quite convenient in distributed environment, because it eliminates need for designing solution (or using already existing one) for central session management on server side.
Further more, authenticating with simple user-password pair does not have to be in all case done trough custom code which looks up matching user-record in database. There is, for example basic authentication protocol , or digest authentication. On proprietary software like Windows platform, there are also ways of authenticating user trough, for an example,ActiveDirectory
Providing username/password pair is not only way to authenticate, if using HTTPS protocol, you can also consider authentication using digital certificates.
In specific use case, if designing web service, which uses SOAP as protocol, there is also WS-Security extension for SOAP protocol.
With all these said, I would say that answers to following question enter decision procedure for choice of authorization/authentication mechanism for WebApi:
1) What's the targeted audience, is it publicly available, or for registered(paying) members only?
2) Is it run or *NIX, or MS platform
3) What number of users is expected
4) How much sensitive data API deals with (stronger vs weaker authentication mechanisms)
5) Is there any SSO service that you could use
.. and many more.
Hope that this clears things bit, as there are many variables in equation.
If the API based APP is a Client, then the API must have option to retrieve/read the cookies from server response stream and store it. For automatic appending of cookies while preparing request object for same server/url. If it is not available, session id cannot be retrieved.
You are right, well the reason things are 'automatic' in a standard environment is because cookies are preferred over URL propagation to keep things pretty for the users. That said, the browser (client software) manages storing and sending the session cookie along with every request.
In the API world, simple systems often just have authentication credentials passed along with every request (at least in my line of work). Client authors are typically (again in my experience) reluctant to implement cookie storage, and transmission with every request and generally anything more than the bare minimum...
There are plenty of other authentication mechanisms out there for HTTP-based APIs, HTTP basic / digest to name a couple, and of course the ubiquitous o-auth which is designed specifically for these things if I'm not mistaken. No cookies are maintained, credentials are part of every exchange (fairly sure on that).
The other thing to consider is what you're going to do w/ the session on the server in an API. The session on a website provides storage for the current user, and typically stores small amounts of data to take load off the db from page to page. In an API context this is less of a need as things are more-or-less stateless, speaking generally of course; it really depends what the service is doing.
I would suggest you send some kind of token with each request.
Dependent on the server and service those can be a JSESSIONID parameter in your GET/POST request or something mature like SAML in SOAP over HTTP in your Web Service request.

Preventing "Pass the Hash" Attacks in a Web API?

I may not be going about this in the best way possible, but as a school project, I'm in a group where we are developing a system to handle checking in and checking out of dorm rooms and handling any charges that may arise because of damages to items in the room. We are digitizing the project and putting in on the web and writing a native iPhone app (part of the assignment, I'd rather just make it a universal web app, but oh well). For the iPhone app, we're putting together a web API but I'm having some doubts about our attempts to keep the API secure.
Our process right now is a call to the API to log in with a username and a password hash, if it was a successful login, an Authentication Token is generated and returned to the iPhone in XML along with various other data. Each subsequent request requires this AuthToken. A user can either sign out, or if there's inactivity for 20 minutes, the AuthToken is destroyed server side. But this leaves the API open for the "Pass The Hash" attack where anybody listening in on the request can get the password hash out of the query string. Anybody with Wireshark and a simple filter can wait for somebody to sign in when everybody would be moving into the dorms and be able to manipulate just about anything.
Every single request is susceptible to the Pass The Hash attack. When logging in, the username and password can be repeated later to obtain a different AuthToken. Not only that, any already generated AuthTokens could be used and the session extended without the real user knowing.
I have thought of the idea of tying the AuthToken to an IP address and rejecting requests that use a valid AuthToken from an alternate IP address, is this reliable or will the iPhone be jumping IP addresses when on the cell network instead of Wifi? I want to give any malicious users a hard time, but obviously not legitimate users.
The project is still in the early stages so now would be the time to make drastic changes to the API like this. Any tips on securing a web API would be awesome.
Your best bet would be to send everything over SSL. That will prevent anyone listening to the wire and sniffing either the password hash or the authentication token.
You should also consider sending a nonce to the client that gets hashed along with the password to prevent replay attacks.
It's also pretty easy to change the authentication token on each request. This prevents both replay and session-fixation. Just make sure the tokens are good random numbers.
You need to use HTTPS.
Most anything on HTTP is susceptible if you include people using Wireshark. HTTPS encrypts all traffic between the client and the server and will prevent most packet sniffing attacks.

REST and authentication variants

I am currently working on a REST library for .net, and I would like to hear some opinions about an open point I have: REST and authentication.
Here is an example of an RESTful interface used with the library:
[RestRoot("/user")]
public interface IUserInterface
{
[RestPut("/")]
void Add(User user);
[RestGet("/")]
int[] List();
[RestGet("/get/{id}")]
User Get(int id);
[RestDelete("/delete/{id}")]
void Delete(int id);
}
The server code then just implements the interface and the clients can obtain the same interface through a factory. Or if the client is not using the library a standard HTTP request also works.
I know that there are the major ways of either using HTTP Basic Auth or sending a token to requests requiring authenticated users.
The first method (HTTP Basic Auth), has the following issues (partly web browser specific):
The password is transmitted with every request - even with SSL this has some kind of "bad feeling".
Since the password is transmitted with a request header, it would be easy for an local attacker to look at the transmitted headers to gain the password.
The password is available in the browsers memory.
No standard way to expire user "sessions".
Login with a browser interrupts the look and feel of a page.
The issues for the second method are more focused on implementation and library use:
Each request URI which needs authentication must have a parameter for the token, which is just very repetitive.
There is a lot more code to write if each method implementation needs to check if a token is valid.
The interface will become less specific e.g. [RestGet("/get/{id}")] vs. [RestGet("/get/{id}/{token}")].
Where to put the token: at the end of the URI? after the root? somewhere else?
My idea was to pass the token as parameter to the URL like http:/server/user/get/1234?token=token_id.
Another possibility would be to send the parameter as an HTTP header, but this would complicate usage with plain HTTP clients I guess.
The token would get passed back to the client as a custom HTTP header ("X-Session-Id") on each request.
This then could be completely abstracted from the interface, and any implementation needing authentication could just ask which user the token (if given) belongs to.
Do you think this would violate REST too much or do you have any better ideas?
I tend to believe that authentication details belong in the header, not the URI. If you rely on a token being placed on the URI, then every URI in your application will need to be encoded to include the token. It would also negatively impact caching. Resources with a token that is constantly changing will no longer be able to be cached. Resource related information belongs in the URI, not application related data such as credentials.
It seems you must be targeting web browsers as a client? If so you could investigate using HTTP Digest access authentication or issuing clients their own SSL certificates to uniquely identify and authenticate them. Also, I don't think that session cookies are necessarily a bad thing. Especially when having to deal with a browser. As long as you isolate the cookie handling code and make the rest of the application not rely on it you would be fine. The key is only store the user's identity in the session, nothing else. Do not abuse server side session state.
If you are targeting clients other than the browser then there are a number of approaches you can take. I've had luck with using Amazon's S3 Authentication mechanism.
This is all very subjective of course. Purity and following REST to the letter can sometimes be impractical. As long as you minimize and isolate such behavior, the core of your application can still be RESTful. I highly recommend RESTful Web Services as a great source of REST information and approaches.
I agree with workmad3, if session life time needs to be maintained you should create a session resource. Post on that resource with user credentials (either basic authentication or credentials in the body content) will return unique session id. Delete on /session/{id} will log out the user.
If you want to control the session expiry time. When creating new session (post on session resource) the server will set a cookie on the response (using standard set-cookie header).
The cookie will contain expiry time. The cookie string should be encrypted on the server, so only the server can open that cookie.
Every consequent request to the server will send the session cookie in the cookie header. (it will be done automatically for you if your client is a browser). The server needs to "renew" the cookie for every request, i.e. create new cookie with new expiry time (extend session's timeout).
Remember to clear the cookie when the user calls delete on the session resource.
If you want your application to be more secured you can store the client IP in the cookie itself, so when a request arrives the server can validate that it was sent from the "original" client. But remember that this solution can be problematic when proxies are involved, because the server might "see" all the requests as coming from the same client.
The rest authentication I've seen treats the sessions as a REST resource for creation, destruction etc. and then the session ID is passed to and fro. The ones I've seen tend to use the session cookie for this as it's the only way to secure it really. If you pass the session id in the URL, you don't have any way of really authenticating it came from the correct client.
Authentication is a tricky problem with REST though, as it requires some form of state to be kept outside the URL which infringes upon REST principles of the URL being all that is required to represent state.