Related
I have a class that retrieves JSON from a URL and returns the data via the protocol/delegate pattern.
MRDelegateClass.h
#import <Foundation/Foundation.h>
#protocol MRDelegateClassProtocol
#optional
- (void)dataRetrieved:(NSDictionary *)json;
- (void)dataFailed:(NSError *)error;
#end
#interface MRDelegateClass : NSObject
#property (strong) id <MRDelegateClassProtocol> delegate;
- (void)getJSONData;
#end
Note that I'm using strong for my delegate property. More about that later...
I am trying to write a 'wrapper' class that implements getJSONData in a block-based format.
MRBlockWrapperClassForDelegate.h
#import <Foundation/Foundation.h>
typedef void(^SuccessBlock)(NSDictionary *json);
typedef void(^ErrorBlock)(NSError *error);
#interface MRBlockWrapperClassForDelegate : NSObject
+ (void)getJSONWithSuccess:(SuccessBlock)success orError:(ErrorBlock)error;
#end
MRBlockWrapperClassForDelegate.m
#import "MRBlockWrapperClassForDelegate.h"
#import "MRDelegateClass.h"
#interface DelegateBlock:NSObject <MRDelegateClassProtocol>
#property (nonatomic, copy) SuccessBlock successBlock;
#property (nonatomic, copy) ErrorBlock errorBlock;
#end
#implementation DelegateBlock
- (id)initWithSuccessBlock:(SuccessBlock)aSuccessBlock andErrorBlock:(ErrorBlock)aErrorBlock {
self = [super init];
if (self) {
_successBlock = aSuccessBlock;
_errorBlock = aErrorBlock;
}
return self;
}
#pragma mark - <MRDelegateClass> protocols
- (void)dataRetrieved:(NSDictionary *)json {
self.successBlock(json);
}
- (void)dataFailed:(NSError *)error {
self.errorBlock(error);
}
#end
// main class
#interface MRBlockWrapperClassForDelegate()
#end
#implementation MRBlockWrapperClassForDelegate
+ (void)getJSONWithSuccess:(SuccessBlock)success orError:(ErrorBlock)error {
MRDelegateClass *delegateClassInstance = [MRDelegateClass new];
DelegateBlock *delegateBlock = [[DelegateBlock alloc] initWithSuccessBlock:success andErrorBlock:error];
delegateClassInstance.delegate = delegateBlock; // set the delegate as the new delegate block
[delegateClassInstance getJSONData];
}
#end
I've come to the objective-c world relatively recently (only lived in ARC times, and still coming to terms with blocks) and admittedly my understanding of memory management is on the slimmer side of things.
This code seems to work fine, but only if I have my delegate as strong. I understand that my delegate should be weak to avoid potential retain-cycles. Looking in instruments, I find that allocations do not continue to grow with continued calls. However, I believe 'best practice' is to have weak delegates.
Questions
Q1) is it ever 'ok' to have strong delegates
Q2) how could I implement the block-based wrapper leaving the delegate of the underlying class as weak delegate (ie. prevent the *delegateBlock from being deallocated before it receives the protocol methods)?
Q1 - Yes. As you point out yourself having delegate properties being weak is a recommendation to help avoid retain cycles. So there is nothing wrong per se with having a strong delegate, but if the clients of your class expect it to be weak you may cause them surprises. The better approach is to keep the delegate weak and for the server side (the class with the delegate property) to keep a strong reference internally for those periods it needs one. As #Scott points out Apple documents doing this for NSURLConnection. Of course that approach doesn't solve your issue - where you want the server to retain the delegate for you...
Q2 - Looked at from the client side the problem is how to keep a delegate alive as long as a server with a weak reference to it requires it. There is a standard solution to this problem called associated objects. In brief the Objective-C runtime essentially allows a key-collection of objects to be associated with another object, along with an association policy which states how long that association should last. To use this mechanism you just need to pick your own unique key, which is of type void * - i.e. an address. The following code outline shows how to use this using NSOpenPanel as an example:
#import <objc/runtime.h> // import associated object functions
static char myUniqueKey; // the address of this variable is going to be unique
NSOpenPanel *panel = [NSOpenPanel openPanel];
MyOpenPanelDelegate *myDelegate = [MyOpenPanelDelegate new];
// associate the delegate with the panel so it lives just as long as the panel itself
objc_setAssociatedObject(panel, &myUniqueKey, myDelegate, OBJC_ASSOCIATION_RETAIN);
// assign as the panel delegate
[panel setDelegate:myDelegate];
The association policy OBJC_ASSOCIATION_RETAIN will retain the passed in object (myDelegate) for as long as the object it is associated with (panel) and then release it.
Adopting this solution avoids making the delegate property itself strong and allows the client to control whether the delegate is retained. If you are also implementing the server you can of course provide a method to do this, maybe associatedDelegate:?, to avoid the client needing to define the key and call objc_setAssociatedObject itself. (Or you can add it to an existing class using a category.)
HTH.
It entirely depends on the architecture of your objects.
When people use weak delegates, it's because the delegate is usually some kind of "parent" object, which retains the thing that has the delegate (let's call the "delegator"). Why does it have to be a parent object? It doesn't have to be; however, in most use cases it turns out to be the most convenient pattern. Since the delegate is a parent object that retains the delegator, the delegator can't retain the delegate or it will have a retain cycle, so it holds a weak reference to the delegate.
However, that is not the only use situation. Take, for example, UIAlertView and UIActionSheet in iOS. The usual way that they are used is: inside a function, create an alert view with a message and add buttons to it, set its delegate, perform any other customization, call -show on it, and then forget it (it is not stored anywhere). It's a kind of "fire and forget" kind of mechanism. Once you show it, you don't need to retain it or anything and it will still be displayed on screen. It's possible in some cases you might want to store the alert view around so you can programmatically dismiss it, but that is rare; in the vast majority of use cases, you simply show and forget it, and just handle any delegate calls.
So in this case, the proper style would be a strong delegate, because 1) the parent object does not retain the alert view, so there is no issue with a retain cycle, and 2) the delegate needs to be kept around, so that when some button is pressed on the alert view, someone will be around to respond to it. Now, a lot of times, #2 isn't a problem because the delegate (parent object) is some kind of view controller or something that is otherwise retained by something else. But this is not always the case. For example, I can simply have a method that is not part of any view controller, which anyone can call to show an alert view, and if the user presses Yes, uploads something to the server. Since it's not part of any controller, it likely is not retained by anything. But it needs to stay around long enough until the alert view is done. So ideally the alert view should have a strong reference to it.
But as I've mentioned before, this is not always what you want for an alert view; sometimes you want to keep it around and dismiss it programmatically. In this case, you want a weak delegate or it will cause a retain cycle. So should an alert view have a strong or weak delegate? Well, the caller should decide! In some situations the caller wants strong; in others the caller wants weak. But how is this possible? The alert view delegate is declared by the alert view class, and must be declared as either strong or weak.
Fortunately, there is a solution that does let the caller decide -- a blocks-based callback. In a blocks-based API, the block essentially becomes the delegate; but the block is not the parent object. Usually the block is created in the calling class and captures self so that it can perform actions on the "parent object". The delegator (alert view in this case) always has a strong reference to the block. However, the block may have a strong or weak reference to the parent object, depending on how the block is written in the calling code (to capture a weak reference to the parent object, don't use self directly in the block, and instead, create a weak version of self outside the block, and let the block use that instead). In this way, the calling code fully controls whether the delegator has a strong or weak reference to it.
You are correct in that delegates are usually weakly referenced. However, there are use cases where a strong reference is preferred, or even necessary. Apple uses this in NSURLConnection:
During a download the connection maintains a strong reference to the delegate. It releases that strong reference when the connection finishes loading, fails, or is canceled.
An NSURLConnection instance can only be used once. After it finishes (either with failure or success), it releases the delegate, and since the delegate is readonly, it can't be (safely) reused.
You can do something similar. In your dataRetrieved and dataFailed methods, set your delegate to nil. You probably don't need to make your delegate readonly if you want to reuse your object, but you will have to assign your delegate again.
As other said it's about architecture. But I'll walk you through it with several examples:
Retry upon failure
Suppose you've made a URLSession, and are waiting for a network call you made through a viewController, sometimes it doesn't matter if it failed, but at other times it does. e.g. you're app is sending a message to another user, then you close that viewcontroller and somehow that network request fails. Do you want it to retry again? If so then that viewController has to remain in memory, so it can resubmit the request again.
Writing to disk
Another case would be when a request succeeds you may want to write something to the disk, so even after the viewcontroller has its UI updated you might still want to sync your local database with the server.
Large background tasks
The original use case for NSURLSession was to power background network task execution, large file downloads and things of that nature. You need something in memory to handle the finalization of those tasks to indicate execution is complete and the OS can sleep the app.
Associating the lifecycle of downloading large files to a certain view is a bad idea…it needs to be tied to some more stable/persistent e.g. the session itself…
Normally if I’m going to use the delegate based system rather than URLSession’s newer block-based API, I have a helper object that encapsulates all the logic necessary to handle failure and success cases that I may require that way, I don’t have to rely on a heavy VC to do the dirty works
This is answer was entirely written thanks to a conversation I had with MattS
I had a library designed for ARC and iOS 5, but a customer wanted to build for iOS 4.x. I converted properties with the weak qualifer to unsafe_unretained, however now it seems I am running into memory corruption-esq crashes.
In the case of the crash, I have a delegate property like this
#property (unsafe_unretained) id<MYDelegateProtocol> delegate;
and I #synthesize the ivar.
whenever I want to call a method on the delegate, I check if it is nil, and if it is not, then I call the method, since I have no optional methods in that protocol, I don't check respondsToSelector.
However, since changing the weak to unsafe_unretained, I have found that apparently the reference goes away, and I am left with a dangling pointer. If I put a breakpoint on ObjC Exceptions, (for unrecognized message), and then po the address of the object, I see that it is an object that is not even implementing the protocol of the delegate, so of course it crashes.
When using unsafe_unretained how can I know that the reference has "gone away"? My code relied on the pointer being zeroed out before.
You have an object ownership problem. An object that has been released won't be nil, it would just be pointing at the address where the object used to be. An nil pointer would point to 0x0. You need to analyze how come your architecture has a delegate that is being released while the record being delegated is alive. On some special circumstances, objects being delegated might retain their delegates (like NSURLConnection). On other cases, objects being delegated are a property of their delegates, in which case, the delegation needs to be cleared out before deallocation. Analyze your pattern and/or provide more information.
Try this class I developed iOSWeakForwarder
When using unsafe_unretained how can I know that the reference has
"gone away"? My code relied on the pointer being zeroed out before.
This has to be determined at compile time by you. Often, the object that is the delegate should set the delegate property of the object delegating to it to nil in the dealloc method. For example:
- (void)dealloc
{
if (_httpRequest.delegate == self)
_httpRequest.delegate = nil;
}
Hope this helps!
It's now more than 5 months that I'm in Objective-C, I've also got my first app published in the App Store, but I still have a doubt about a core functionality of the language.
When am I supposed to use self accessing iVars and when I'm not?
When releasing an outlet you write self.outlet = nil in viewDidUnload, instead in dealloc you write [outlet release]. Why?
When you write self.outlet = nil the method [self setOutlet:nil]; is called. When you write outlet = nil; you access variable outlet directly.
if you use #synthesize outlet; then method setOutlet: is generated automatically and it releases object before assigning new one if you declared property as #property (retain) NSObject outlet;.
Very very important blog to understand about properties getter-setter method in objective c
Understanding your (Objective-C) self
http://useyourloaf.com/blog/2011/2/8/understanding-your-objective-c-self.html
You use self when you are refering to a #property.
Usually it will have been #synthesize'd.
You do not use self if you are refering to a "private" variable. Typically, I use properties for UI elements such as UIButtons or for elements I want easily reachable from other classes.
You can use the #private, #protected modifiers to explicitly enforce visibility. You cannot however use private methods, that do not exist in Objective-C.
The part about nil, release and dealloc is unrelated to the use of "self". You release what you retained, you nil what is autoretained.
You should read the Objective-C guide, it's well written and very enlightening.
You use self. when you're accessing properties of class that you're in (hence self). Basically you use self when you want to retain a value, but is only when you have retain in your property definition.
release just releases object that you've retained. You shouldn't release something that you haven't retained cuz it will lead to crash (zombie object).
Can I intercept a method call in Objective-C? How?
Edit:
Mark Powell's answer gave me a partial solution, the -forwardInvocation method.
But the documentation states that -forwardInvocation is only called when an object is sent a message for which it has no corresponding method. I'd like a method to be called under all circumstances, even if the receiver does have that selector.
You do it by swizzling the method call. Assuming you want to grab all releases to NSTableView:
static IMP gOriginalRelease = nil;
static void newNSTableViewRelease(id self, SEL releaseSelector, ...) {
NSLog(#"Release called on an NSTableView");
gOriginalRelease(self, releaseSelector);
}
//Then somewhere do this:
gOriginalRelease = class_replaceMethod([NSTableView class], #selector(release), newNSTableViewRelease, "v#:");
You can get more details in the Objective C runtime documentation.
Intercepting method calls in Objective-C (asuming it is an Objective-C, not a C call) is done with a technique called method swizzling.
You can find an introduction on how to implement that here. For an example how method swizzling is implemented in a real project check out OCMock (an Isolation Framework for Objective-C).
Sending a message in Objective-C is translated into a call of the function objc_msgSend(receiver, selector, arguments) or one of its variants objc_msgSendSuper, objc_msgSend_stret, objc_msgSendSuper_stret.
If it was possible to change the implementation of these functions, we could intercept any message. Unfortunately, objc_msgSend is part of the Objective-C runtime and cannot be overridden.
By googling I found a paper on Google Books: A Reflective Architecture for Process Control Applications by Charlotte Pii Lunau. The paper introduces a hack by redirecting an object's isa class pointer to an instance of a custom MetaObject class. Messages that were intended for the modified object are thus sent to the MetaObject instance. Since the MetaObject class has no methods of its own, it can then respond to the forward invocation by forwarding the message to the modified object.
The paper does not include the interesting bits of the source code and I have no idea if such an approach would have side effects in Cocoa. But it might be interesting to try.
If you want to log message sends from your application code, the -forwardingTargetForSelector: tip is part of the solution.
Wrap your object:
#interface Interceptor : NSObject
#property (nonatomic, retain) id interceptedTarget;
#end
#implementation Interceptor
#synthesize interceptedTarget=_interceptedTarget;
- (void)dealloc {
[_interceptedTarget release];
[super dealloc];
}
- (id)forwardingTargetForSelector:(SEL)aSelector {
NSLog(#"Intercepting %#", NSStringFromSelector(aSelector));
return self.interceptedTarget;
}
#end
Now do something like this:
Interceptor *i = [[[Interceptor alloc] init] autorelease];
NSFetchedResultsController *controller = [self setupFetchedResultsController];
i.interceptedTarget = controller;
controller = (NSFetchedResultsController *)i;
and you will have a log of message sends. Note, sends sent from within the intercepted object won't be intercepted, as they will be sent using the original object 'self' pointer.
If you only want to log messages called from the outside (usually called from delegates; to see which kind of messages, when, etc.), you can override respondsToSelector like this:
- (BOOL)respondsToSelector:(SEL)aSelector {
NSLog(#"respondsToSelector called for '%#'", NSStringFromSelector(aSelector));
// look up, if a method is implemented
if([[self class] instancesRespondToSelector:aSelector]) return YES;
return NO;
}
Create a subclass of NSProxy and implement -forwardInvocation: and -methodSignatureForSelector: (or -forwardingTargetForSelector:, if you're simply directing it on to a second object instead of fiddling with the method yourself).
NSProxy is a class designed for implementing -forwardInvocation: on. It has a few methods, but mostly you don't want them to be caught. For example, catching the reference counting methods would prevent the proxy from being deallocated except under garbage collection. But if there are specific methods on NSProxy that you absolutely need to forward, you can override that method specifically and call -forwardInvocation: manually. Do note that simply because a method is listed under the NSProxy documentation does not mean that NSProxy implements it, merely that it is expected that all proxied objects have it.
If this won't work for you, provide additional details about your situation.
Perhaps you want NSObject's -forwardInvocation method. This allows you to capture a message, retarget it and then resend it.
You can swizzle the method call with one of your own, which does whatever you want to do on "interception" and calls through to the original implementation. Swizzling is done with class_replaceMethod().
A method call, no. A message send, yes, but you're going to have to be a lot more descriptive if you want a good answer as to how.
To do something when a method is called, you could try an events based approach. So when the method is called, it broadcasts an event, which is picked up by any listeners. I'm not great with objective C, but I just figured out something similar using NSNotificationCenter in Cocoa.
But if by "intercept" you mean "stop", then maybe you need more logic to decide wether the method should be called at all.
I am trying to implement the delegate Pattern in Objective-C, however I am experiencing a Bad Access exception when invoking the delegate sometimes. It seems this is caused by the delegate being released. Apple does not recommend to retain delegates.
How can I check my delegate if is still valid before trying to send it a message?
If there's a chance that the delegate will get released by the setter, then there's something wrong with your design. You should only set delegates on objects that have a shorter lifespan than the delegate itself. For example, setting a delegate on a subview/controller is fine, because the subview/controller has a shorter lifespan than the caller.
AFAIK, there is no reliable way to detect if an object has been released already.
What Apple means about not retaining delegates is that objects should not retain their delegates because they don't own them. These are only objects that handle messages.
That doesn't mean that you shouldn't retain delegates at all. The object that creates the delegate needs to own it. In the context of non-GC apps this means it should handle the retain and release cycle, and for GC apps, it means that the controller object keeps hold of a pointer to the delegate in an iVar.
without seeing some code or the error message, it is hard to find the root of this problem.
In a photoviewer application I'm using asynchronous http to load images; it happens that the user often dismisses the current view (referenced by my async http object through a delegate) before the http download completed causing a BAD_ACCESS when calling the view controller delegate method. I solved this by setting the .delegate to nil inside the dealloc block of the view controller
I'd like to share my experience also, which is very similar to Nico's one.
I've been working with a modified example of LazyTablesCode, wich is an example that comes direcly from Apple and loads images in a UITableView asynchronously. Communication between the downloader and the view it's made via delegates.
In my code, I had the problem that sometimes the load of the image finishes when the form that should be called through the delegate has been released. I've been forced to add this piece of code inside the code of the viewController (dealloc method):
if (self.nsDictionaryWithObjectsDownloading != nil) {
for (id theKey in self.nsDictionaryWithObjectsDownloading) {
Myobj *downloader = [self.nsDictionaryWithObjectsDownloading objectForKey:theKey];
downloader.delegate = nil;
}
}
It seems that these lines are solving the problem. Anyway It would be very appreciated opinions about if it's a good solution or not or even about memory issues when doing downloader.delegate = nil;
Thanks and greetings,