Objective-C Returning Autoreleased Copies - objective-c

A strange issue I've come across trying to understand Apple's Memory Management standards. Lets say I have a method that returns a copy without letting the user know that it is a copy.
+(Point2D*) Add:(Point2D*)a To:(Point2D*)b
{
Point2D * newPoint = [a copy];
[newPoint Add:b]; // Actually perform the arithmetic.
return [newPoint autorelease];
}
The problem is that Xcode's Analyze function flags this as an object being sent too many -autorelease calls. I'm assuming this is because -copy implicitly assumes that you are taking ownership, and thus the possibility of +0 retain count is likely. But I'm not entirely sure.
Xcode's Analyze Information
+(Point2D*) Add:(Point2D*)a To:(Point2D*)b
{
Point2D * newPoint = [a copy]; // <- 1. Method returns an Objective-C object with a +0 retain count.
[newPoint Add:b];
return [newPoint autorelease]; // <- 2. Object sent -autorelease method.
// <- 3. Object returned to caller with a +0 retain count.
// <- 4. Object over -autoreleased: object was sent -autorelease but the object has zero (locally visible) retain counts.
}
Any tips or hints on why this is happening? Unless I'm missing something, the code should work fine because the autorelease wont trigger until a safe time (i.e. it works kind of like a convenience constructor, user has time to retain.)
As per request, -copyWithZone: would be implemented as such:
-(id)copyWithZone:(NSZone *)zone
{
return [[Point2D allocWithZone:zone] initX:x Y:y Z:z];
}

Implement -copyWithZone:(NSZone*)zone in your Point class correctly (or at least please copy it here)

Related

returning an nsmutuableArray as a pointer that is an mutuablecopy

I dont want to return manch because if i autorelease before i return it ,it becomes invalid to others. so i was thinking of this :
classA
-(NSMutableArray*)set:(NSMutableArray*)data
{
manch= [[data mutableCopy]autorelease] ;
int count=2*[data count]; //to not enter infinity loop
for(int k=0;k< count;k=k+2)
{
if(k==count-1)
[manch addObject:[NSNumber numberWithInt:![[manch objectAtIndex:k] integerValue] ] ];
}
data=[manch mutuableCopy];
return data;
}
My goal is to create a class that gets an NSMutuableArray do some calculations, than return it, and NOT TO BE DEPEND on this class anymore .
EDIT :
As people here ask.
in another classB(the user of the method above), i have in the interface :
NSMutuableArray *data ;
and on the .m file init method i have
data=[[NSMutuableArray alloc]init];
to use the function from my question, i do :
mIns=[[classA alloc]init];
data= [mIns set:[self decimalToBinary:autoWord]];
than i loose data later.
I dont want to return manch because if i autorelease before i return it ,it becomes invalid to others. so i was thinking of this:
This is an incorrect statement, you can return an autoreleased object, that's a sane thing to do. It's worth noting that you should design your method names correctly to inform the user what sort of object is returned. Any method whose name begins with alloc, new, copy, or mutableCopy will return a retained object. (Source)
In your case, your method name is set:, which informs the user of this method that it will return a non retained object (almost always an autoreleased object). This is because it isn't prefixed with any of those words mentioned above.
In that case, the issue you have is with the user of the method; they are not retaining a reference to the object being returned. As such, the user of the method should use it as so:
#interface ClassName () {
NSMutableArray* m_ivarArray;
}
#property (nonatomic, retain) NSMutableArray* propertyArray;
#end
NSMutableArray* data = ...;
// If using a property with retain, setting via "self." will retain it for you
self.propertyArray = [self set:data];
// If using an ivar (which doesn't do the retain for you)
m_ivarArray = [[self set:data] retain];
You can avoid these issues by using Automatic Reference Counting (ARC, More Information), which will handle this sort of memory management for you. It is still important that you use the correct naming conventions, as ARC will judge how to manage your memory based on this (in certain situations)
Update: After seeing your update, I can see the problem.
data=[[NSMutuableArray alloc]init];
This is creating a new instance of NSMutableArray, one which is correctly retained (due to what I mentioned before).
data= [mIns set:[self decimalToBinary:autoWord]];
This is replacing the object held in data with a new NSMutableArray, one that is autoreleased. The previous instance you created has been lost, and you've replaced it with another one. This new instance has not been retained, and as such, will be released unexpectedly.
To fix, you need to use this instead:
NSMutableArray* data = [[mIns set:[self decimalToBinary:autoWord]] retain];
You don't need to alloc/init a variable if it will be populated by some other object later on. I strongly suggest brushing up on how this all works, this might be a good start.

Basic memory management confusion

I bet that I could find the answer of this question from reading similar threads here or by googling, but I would like "hear" it first hand so to speak because it's an anomaly in my understanding.
So here's the thing, I have some code which a previous employee wrote and I see a lot of a certain type of construct which looks rather odd to me and I just want to clarify what is "right and wrong".
For example
- (void) setWwanServiceId: (NSString *) newValue {
[wwanServiceId autorelease];
wwanServiceId = [newValue copy];
}
Here wwanServiceIdis a NSString member of the class, and to me this seem like a strange way to do it. As far as I understand it would begin by putting an autorelease on the object, basically saying: "whenever this object seem to not be used, release it for me I don't really care" then the copy will up the retain count +1 on.... wwanServiceId? or newValue? I guess the first.
Then to make me all more confused let's just quickly run through the life-cycle of the wwanServiceId-string..
basically the value will be set if we receive a notification which then from the notification-handler method will call the above -setWwanServiceId: method. other than that it will only ever be accessed for reading, so we are safe to say that it will at any given point:
put autorelease on object
retain a new string copy
Then there is one more quirk to this and this is where I am getting rather suspicious, namely in the -dealloc method which looks like this:
- (void) dealloc {
[[self wwanServiceId] release];
[super dealloc];
}
So what happens there? it will afaik release the wwanServiceId and as I said the only time it's memory management is being touched (if I haven't missed anything but I feel pretty sure) is to put an autorelease and retain it.
So to summarize:
Is the idea here that he thought that since he always retain a new copy after putting autorelease he need to release it in the end.. or well it's the only thing I can think about. Or just felt it would be safe to do an extra release in the end just in case..?
Because as far as I understand it, if this setter is called one time it will put an autorelease (-1 in future), do a retain (+1) and when destructor is called it will do the "final release" (-1).
Any ideas or suggestions helping me understand (if in fact I am wrong and the memory handling is correct as is) would be appreciated.
You wrote:
Here wwanServiceIdis a NSString member of the class, and to me this seem like a strange way to do it. As far as I understand it would begin by putting an autorelease on the object, basically saying: "whenever this object seem to not be used, release it for me I don't really care" then the copy will up the retain count +1 on.... wwanServiceId? or newValue? I guess the first.
This seems to point to the source of your confusion. wwanServiceId is a variable which can contain a reference to an object of type NSString. Variables do not have reference counts only objects do.
The previous employee wrote:
- (void) setWwanServiceId: (NSString *) newValue {
[wwanServiceId autorelease];
wwanServiceId = [newValue copy];
}
The expression [wwanServiceId autorelease] means: read the reference stored in wwanServiceId and autorelease the object that reference refers to - let's call that object A. Important: This does not delete object A; it will be released as some later stage and if at that time there are no remaining references object A will be deleted.
The expression [newValue copy] means: read the reference stored in newValue, use that to locate the object (call it object B), make a copy of that object to produce a new object (call it object C), and return a reference to the new object. This new object is owned by the caller of copy, so there is no need to retain it.
Finally the assignment stores the reference to object C into wwanServiceId.
So there is a maximum of three distinct objects involved:
A: the original object referenced by wwanServiceId, this is autoreleased to remove the ownership of wwanServiceId.
B: the object referenced by newValue, this is left untouched
C: a newly created copy of B owned through wwanServiceId
Why "autorelease" in the code and "maximum of three distinct" above?
The method could be called with newValue referencing object A, e.g. as in:
[self setWwanServiceId:[self wwanServiceId]]
If this was to occur and (a) release was used instead of autorelease and (b) there was no other reference to object A then the release would delete object A and then when [newValue copy] was evaluated newValue would be referencing a deleted object... The use of autorelease in this case delays the deletion until after the copy.
So what the previous employee wrote is not in any way "wrong", but as some of the other answer suggest it may be an unusual style. Another way you see this written is:
- (void) setWwanServiceId: (NSString *) newValue
{
NSString *oldValue = wwanServiceId;
wwanServiceId = [newValue copy];
[oldValue release];
}
which also ensures any deletion occurs after the copy.
HTH.
To be short and helpful:
This is wrong:
- (void) setWwanServiceId: (NSString *) newValue {
[wwanServiceId autorelease];
wwanServiceId = [newValue copy];
}
This is right:
- (void) setWwanServiceId: (NSString *) newValue {
if (newValue != wwanServiceId) {
[wwanServiceId release];
wwanServiceId = [newValue copy];
}
}
To explain in short:
[wwanServiceId autorelease]; is an unnecessary sent message, because autoreleasing an object will reduce the retain count at some unknown point in the future. And in the next line you are wwanServiceId = [newValue copy]; instantly setting the instance variable. So, in your memory you now have a to be autoreleased object and a new object. One of them is too much The new object is, where the pointer of your IVar is pointing to. The old one is swimming in your Memory Pool with probably no reference to it :-)
Autorelease as few as possible or use ARC.
Oh: And in the dealloc method, please do not send the message like this:
[[self wwanServiceId] release];
Better like this:
[wwanServiceId release];
as Apple recommends to work directly with instance methods in init and dealloc methods, instead of using getters and setters there.
Debug it and have a look.
[wwanServiceId autorelease];
wwanServiceId has an address. This statement does not change it. It does decrement the retain count of this object though.
Thats it.
wwanServiceId = [newValue copy];
This statement creates a new object. The new object is a copy of newValue. Compare the addresses of the objects and you will see, that the address inn wwanServiceId will vary from the address of newValue and it will vary from the address that wwanServiceId did have just before the statement was executed.
The retain, that is implicit in copy will affect wwanServiceId, but it affects the new object, that was just creaed with copy. It does not affect the wwanServiceId object which was autoreleased during the statement before.
At some point after the execution of setWwanServiceId had finished, the old and autoreleased object will dissappear. (Assuming that the retain count is 0 now. If it is >0 because it is still retained for other reasons or just for error, then it will remain and potentially cause a leak.)
Once you understood that you will not question any more what is happening in the dealloc method. wwanServiceId is released. Meaning its retain count is reduced by 1. In the event that it is 0 then it will be deallocated automatically.
You could even autorelease it there too. The diffrerence to autorelease is basically that an autoreleased object is still around and available while the current method is being executed. Its release comes into effect at some later point in time.
But there is no reason for autoreleasing the object in dealloc.
In the example given there is not even a good reason to autorelease the object in the setter setWwanServiceId. You may well release the object directly in both methods.
Assuming wwanServiceId is the private ivar mapped by the getter wwanServiceId and setter setWwanServiceId, I think it is not correct to autorelease the ivar in the setter.
I would have coded the following:
- (void) setWwanServiceId: (NSString *) newValue {
if (newValue != wwanServiceId) {
[wwanServiceId release];
wwanServiceId = [newValue copy];
}
}
What I mean is: it is not necessary to give ownership of your var to the autorelease pool (which it may be drained at the end of the application). Simply release the ivar. If someone is using it, no problem, it will have a strong reference to it. Otherwise it will be deallocated.

Should I be using [autorelease]?

I'm needing to quickly and simply parse an XML file in my app. The best solution for me seems to be something along the lines of an XML-to-NSDictionary converter which I can then dig through easier.
I chose to use this small class: http://troybrant.net/blog/2010/09/simple-xml-to-nsdictionary-converter/
However I'm confused about the returned NSDictionary* and its state in memory. The class method dictionaryForXMLData allocs and inits the class. objectWithData then goes off and does the heavy lifting returning the NSDictionary object which gets returned to the caller.
The confusing part for me is [reader release] before the return (I understand this must happen because of the way reader was created). My understanding of NSDictionaryis that all the objects will also be sent the release message which means the object that we're returning shouldn't have a retain count. Note that the object is created with a convenience method and only gets a retain count when it is added to the stack.
Should the return statement not be return [rootDictionary autorelease]. The problem I see with that is that there is no telling when rootDictionary will be released and depending on the size of the XML file it could sit there clogging memory? Or do I have it all wrong?
What they are doing is not correct. The object returned by objectWithData: is possibly simply a reference to something retained inside reader. And by releasing reader, you are potentially deallocating the rootDictionary you got earlier. Depending on the inner workings of the XMLReader class, it is possible that the thing they return from objectWithData: is retained and autoreleased; but that is an implementation detail, and you cannot depend on it (plus Cocoa memory management is local, so you should never care about what other functions do).
The correct thing to do would be to retain the rootDictionary you get, and then autorelease it (to balance the retain since you have to return it without ownership).
+ (NSDictionary *)dictionaryForXMLData:(NSData *)data error:(NSError **)error
{
XMLReader *reader = [[XMLReader alloc] initWithError:error];
NSDictionary *rootDictionary = [[[reader objectWithData:data] retain] autorelease];
[reader release];
return rootDictionary;
}

autorelease interior pointer/object?

Suppose I have this code:
-(SomeOtherType*) getMyObject {
SomeType someObject = [[SomeType alloc] init];
// ... later on
SomeOtherType toReturn = [[[someObject interiorObject] retain] autorelease];
[someObject release];
return toReturn;
}
The toReturn object, am I handling it correctly? I want to deliver it as an autoreleased object, but I do want to scrap someObject. Is this the pattern to transfer ownership? I've gone over it in my head and on paper, and it seems OK, but I'd rather be informed by someone more enlightened.
Edit This is a very contrived example, just to illustrate the problem at hand. someObject lives across many method calls, and in the end, I want to "dump its guts". This is NOT a Daily WTF example. Please don't ridicule me. :)
The code you have provided in your question is correct. Lets go over why. When thinking about retain/release you need to think about ownership. Objects are typically owned by another object or within some particular scope. In this case getByObject's scope. The object you want to return is the interiorObject which is owned by someObject. But you need to release someObject before you return. The proper thing to do is take ownership of the interiorObject and return an autoreleased copy. And finally release or autorelease someObject.
If ownership was not acquired to the interiorObject before the release of someObject then the interiorObject could be deallocated and we would be returning a dangling pointer. The first time someone tries to send a message to it the program would likely crash.
I'm not 100% sure you need to do the retain / autorelease dance unless your expecting another thread to potentially deallocate your object?
- (SomeOtherType *)getMyObject
{
SomeType someObject = [[SomeType alloc] init];
// ... later on
SomeOtherType toReturn = [someObject interiorObject];
[someObject release];
return toReturn;
}
The retain / autorelease dance will guarantee that the object hangs around to the end of the runloop even if another thread releases it's retains on it.

Is this if needed?

This method is generated by Xcode 3.2 using "Accessor defs to clipboard"
- (void)setBodyMass:(int)newBodyMass {
if (bodyMass != newBodyMass) {
bodyMass = newBodyMass;
}
}
Could I just as easily write this as you see below? It seems to be doing a conditional test to save it doing a possible redundant assignment.
- (void)setBodyMass:(int)newBodyMass {
bodyMass = newBodyMass;
}
cheers -gary-
Normally you do a check like that in a mutator method because you're working with objects that have to be released. Say you have a mutator method without that check:
- (void)setObject:(MyObject *)anObj
{
[obj release];
obj = [anObj retain];
}
Imagine (for some reason) you have a chunk of code like this that uses that method:
MyObject *o = [MyObject object]; // Auto-released
[anotherObject setObject:o];
[anotherObject setObject:o];
On Line 1, you can assume o has a retain count of 0 (since it's autoreleased). On Line 2, o has been passed to setObject:, which retains it and stores it in the instance variable obj. Since we're working with pointers, o and obj point to the same object in memory, which now has a retain count of 1.
On Line 3, you pass the same object to setObject: again. But right away in that method, you release anObj, which is the same object that both o and obj point to! This means that o, obj, and anObj have a retain count of 0. When you set obj to [obj retain], you're making obj point to an object that has been released already.
This is obviously bad, so when working with mutator methods that deal with objects, you should always use that guard, which effectively checks to see if obj and anObj point to the same object in memory; if they do, nothing happens.
However, this guard isn't necessary in your example, because you're passing an int -- not a pointer -- and ints, of course, never get released (since they're not objects).
I'd do it your way; assigning an int is very cheap. The check makes sense if the assignment is to some large data structure or might have unintended side effects, neither of which is true for int.
Does the assignment cause something to trigger (event)? Doesn't seem so. You can compare but for a simple int I do not think it's an obligation to verify if the value is the same or not. Of course, if you want to display something to the user concerning that he has entering the same value, you might check the value, otherwise, I would not check it.