Manage multiple instances of a process automatically - process

I have a program that takes about 1 second to run and takes a file as input and produces another file as output. Problem is I have to be able to process about 30 files a second. The files to process will be available as a queue (implemented over memcached) and don't have to be processed exactly in order, so basically an instance of the program checks out a file to process and does so. I could use a process manager that automatically launches instances of the program when system resources are available.
At the simple end, "system resources" will simply mean "up to two processes at a time," but if I move to a different machine make this could be 2 or 10 or 100 or whatever. I could use a utility to handle this, at least. And at the complex end, I would like to bring up another process whenever CPU is available since these machines will be dedicated. CPU time seems to be the constraining resource - the program isn't memory intensive.
What tool can accomplish this sort of process management?

Storm - Without knowing more details, I would suggest Backtype Storm. But it would probably mean a total rewrite of your current code. :-)
More details at Tutorial, but it basically takes tuples of work and distributed them through a topology of worker nodes. A "spout" emits work into the topology and a "'bolt" is a step/task in the graph where some bit of work takes place. When a bolt finish it's work, it emits same/new tuple back into the topology. Bolts can do work in parallel or series.

Related

Underlying hardware mapping of Vulkan queues

Vulkan is intended to be thin and explicit to user, but queues are a big exception to this rule: queues may be multiplexed by driver and it's not always obvious if using multiple queues from a family will improve performance or not.
After one of driver updates, I've got 2 transfer-only queues instead of one, but I'm pretty sure that there will be no benefit in using them in parallel for data streaming compared to just using one of them (will be happy to be proved wrong)
So why not just say "we have N separate hardware queues and if you want to use some of them in parallel, just mutex it yourself"? Now it looks like there's no way to know, how independent queues in family really are.
GPUs these days have to contend with a multi-processed world. Different programs can access the same hardware, and GPUs have to be able to deal with that. As such, having parallel input streams for a single piece of actual hardware is no different from being able to create more CPU threads than you have actual CPU cores.
That is, a queue from a family is probably not "mutexing" access to the actual hardware. At least, not in a CPU way. If multiple queues from a family are different paths to execute stuff on the same hardware, then the way that hardware gets populated from these multiple queues probably happens at the GPU level. That is, it's an actual hardware feature.
And you could never get performance equivalent to that hardware feature by "mutexing it yourself". For example:
I've got 2 transfer-only queues instead of one, but I'm pretty sure that there will be no benefit in using them in parallel for data streaming compared to just using one of them
Let's assume that there really is only one hardware DMA channel with a fixed bandwidth behind that transfer queue. This means that, at any one time, only one thing can be DMA'd from CPU memory to GPU memory at one time.
Now, let's say you have some DMA work to do. You want to upload a bunch of stuff. But every now and then, you need to download some rendering product. And that download needs to complete ASAP, because you need to reuse the image that stores those bytes.
With prioritized queues, you can give the download transfer queue much higher priority than the upload queue. If the hardware permits it, then it can interrupt the upload to perform the download, then get back to the upload.
With your way, you'd have to upload each item one at a time at regular intervals. A process that will have to be able to be interrupted by a possible download. To do that, you'd basically have to have a recurring tasks that shows up to perform and submit a single upload to the transfer queue.
It'd be much more efficient to just throw the work at the GPU and let its priority system take care of it. Even if there is no priority system, then it'll probably perform operations round-robin, jumping back and forth between the input transfer queue operations rather than waiting for one queue to run dry before trying another.
But of course, this is all hypothetical. You'd need to do profiling work to make sure that these things pan out.
The main issue with queues within families is that they sometimes represent distinct hardware with their own dedicated resources and sometimes they don't. AMD's hardware for example offers two transfer queues, but these actually use separate DMA channels. Granted, they probably still share the same overall bandwidth, but it's not a simple case of one queue having to wait to execute work until the other queue has executed a transfer command.

operating system - context switches

I have been confused about the issue of context switches between processes, given round robin scheduler of certain time slice (which is what unix/windows both use in a basic sense).
So, suppose we have 200 processes running on a single core machine. If the scheduler is using even 1ms time slice, each process would get its share every 200ms, which is probably not the case (imagine a Java high-frequency app, I would not assume it gets scheduled every 200ms to serve requests). Having said that, what am I missing in the picture?
Furthermore, java and other languages allows to put the running thread to sleep for e.g. 100ms. Am I correct in saying that this does not cause context switch, and if so, how is this achieved?
So, suppose we have 200 processes running on a single core machine. If
the scheduler is using even 1ms time slice, each process would get its
share every 200ms, which is probably not the case (imagine a Java
high-frequency app, I would not assume it gets scheduled every 200ms
to serve requests). Having said that, what am I missing in the
picture?
No, you aren't missing anything. It's the same case in the case of non-pre-emptive systems. Those having pre-emptive rights(meaning high priority as compared to other processes) can easily swap the less useful process, up to an extent that a high-priority process would run 10 times(say/assume --- actual results are totally depending on the situation and implementation) than the lowest priority process till the former doesn't produce the condition of starvation of the least priority process.
Talking about the processes of similar priority, it totally depends on the Round-Robin Algorithm which you've mentioned, though which process would be picked first is again based on the implementation. And, Windows and Unix have same process scheduling algorithms. Windows and Unix does utilise Round-Robin, but, Linux task scheduler is called Completely Fair Scheduler (CFS).
Furthermore, java and other languages allows to put the running thread
to sleep for e.g. 100ms. Am I correct in saying that this does not
cause context switch, and if so, how is this achieved?
Programming languages and libraries implement "sleep" functionality with the aid of the kernel. Without kernel-level support, they'd have to busy-wait, spinning in a tight loop, until the requested sleep duration elapsed. This would wastefully consume the processor.
Talking about the threads which are caused to sleep(Thread.sleep(long millis)) generally the following is done in most of the systems :
Suspend execution of the process and mark it as not runnable.
Set a timer for the given wait time. Systems provide hardware timers that let the kernel register to receive an interrupt at a given point in the future.
When the timer hits, mark the process as runnable.
I hope you might be aware of threading models like one to one, many to one, and many to many. So, I am not getting into much detail, jut a reference for yourself.
It might appear to you as if it increases the overhead/complexity. But, that's how threads(user-threads created in JVM) are operated upon. And, then the selection is based upon those memory models which I mentioned above. Check this Quora question and answers to that one, and please go through the best answer given by Robert-Love.
For further reading, I'd suggest you to read from Scheduling Algorithms explanation on OSDev.org and Operating System Concepts book by Galvin, Gagne, Silberschatz.

How can I speed up a Mac app processing 5000 independent tasks?

I have a long running (5-10 hours) Mac app that processes 5000 items. Each item is processed by performing a number of transforms (using Saxon), running a bunch of scripts (in Python and Racket), collecting data, and serializing it as a set of XML files, a SQLite database, and a CoreData database. Each item is completely independent from every other item.
In summary, it does a lot, takes a long time, and appears to be highly parallelizable.
After loading up all the items that need processing it, the app uses GCD to parallelize the work, using dispatch_apply:
dispatch_apply(numberOfItems, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0), ^(size_t i) {
#autoreleasepool {
...
}
});
I'm running the app on a Mac Pro with 12 cores (24 virtual). So I would expect to have 24 items being processed at all times. However, I found through logging that the number of items being processed varies between 8 and 24. This is literally adding hours to the run time (assuming it could work on 24 items at a time).
On the one hand, perhaps GCD is really, really smart and it is already giving me the maximum throughput. But I'm worried that, because much of the work happens in scripts that are spawned by this app, maybe GCD is reasoning from incomplete information and isn't making the best decisions.
Any ideas how to improve performance? After correctness, the number one desired attribute is shortening how long it takes this app to run. I don't care about power consumption, hogging the Mac Pro, or anything else.
UPDATE: In fact, this looks alarming in the docs: "The actual number of tasks executed by a concurrent queue at any given moment is variable and can change dynamically as conditions in your application change. Many factors affect the number of tasks executed by the concurrent queues, including the number of available cores, the amount of work being done by other processes, and the number and priority of tasks in other serial dispatch queues." (emphasis added) It looks like having other processes doing work will adversely affect scheduling in the app.
It'd be nice to be able to just say "run these blocks concurrently, one per core, don't try to do anything smarter".
If you are bound and determined, you can explicitly spawn 24 threads using the NSThread API, and have each of those threads pull from a synchronized queue of work items. I would bet money that performance would get noticeably worse.
GCD works at its most efficient when the work items submitted to it never block. That said, the workload you're describing is rather complex and rife with opportunities for your threads to block. For starters, you're spawning a bunch of other processes. Right here, this means that you're already relying on the OS to divvy up time/resources between your master task and these slave tasks. Other than setting the OS priority of each subprocess, the OS scheduler has no way to know which processes are more important than others, and by default, your subprocesses are going to have the same priority as their parent. That said, it doesn't sound like you have anything to gain by tweaking process priorities. I'm assuming you're blocking the master task thread that's waiting for the slave tasks to complete. That is effectively parking that thread -- it can do no useful work. But like I said, I don't think there's much to be gained by tweaking the OS priorities of your slave tasks, because this really sounds like it's an I/O bound workflow...
You go on to describe three I/O-heavy operations ("serializing it as a set of XML files, a SQLite database, and a CoreData database.") So now you have all these different threads and processes vying for what is presumably a shared bulk storage device. (i.e. unless you're writing to 24 different databases, on 24 separate hard drives, one for each core, your process is ultimately going to be serialized at the disk accesses.) Even if you had 24 different hard drives, writing to a hard drive (even an SSD) is comparatively slow. Your threads are going to be taken off of the CPU they were running on (so that another thread that's waiting can run) for virtually any blocking disk write.
If you wanted to maximize the performance you're getting out of GCD, you would probably want to rewrite all the stuff you're doing in subtasks in C/C++/Objective-C, bringing them in-process, and then conducting all the associated I/O using dispatch_io primitives. For API where you don't control the low-level reads and writes, you would want to carefully manage and tune your workload to optimize it for the hardware you have. For instance, if you have a bunch of stuff to write to a single, shared SQLite database, there's no point in ever having more than one thread trying to write to that database at once. You'd be better off making one thread (or a serial GCD queue) to write to SQLite and submitting tasks to that after pre-processing is done.
I could go on for quite a while here, but the bottom line is that you've got a complex, seemingly I/O bound workflow here. At the highest-level, CPU utilization or "number of running threads" is going to be a particularly poor measure of performance for such a task. By using sub-processes (i.e. scripts), you're putting a lot of control into the hands of the OS, which knows effectively nothing about your workload a priori, and therefore can do nothing except use its general scheduler to divvy up resources. GCD's opaque thread pool management is really the least of your problems.
On a practical level, if you want to speed things up, go buy multiple, faster (i.e. SSD) hard drives, and rework your task/workflow to utilize them separately and in parallel. I suspect that would yield the biggest bang for your buck (for some equivalence relation of time == money == hardware.)

VB.NET multi threading and system architecture

I believe I have a reasonable understanding of threading from an Object Oriented perspective using the Thread class and the Runnable interface. In one of my applications there is a "download" button that allows the user to run a task in the background that takes about half an hour whilst continuing to use the VB.NET application.
However, I do not understand how Threading maps to the physical architecture of a computer. If you have a single threaded application that runs on a PC with a quadcore processor then does a .net program use all four processors?
If you have a multi threaded application (say four threads) on a quadcore processor then does each thread execute on different cores?
Do you have any control of this as a developer?
I have referenced a book I read at university called Operating System Concepts, but I have not found a specific answer.
If you have a single threaded application that runs on a PC with a quadcore processor then does a .net program use all four processors?
No, it can’t, at least not simultaneously. However, it’s theoretically possible that the operating system’s scheduler first executes your thread on one processor and later moves it to another processor. Such a scheduler is necessary to allow simultaneously running more applications / threads than there are physical processors present: execution of a thread is sliced into small pieces, which are fed to the processor(s) one after the other. Each threads gets some time slice allocated during which it can calculate before usage of the CPU switches to another thread.
Do you have any control of this as a developer?
Not directly. What you can control is the priority of your thread to make it more important to the task scheduler.
On a more general note, you should not use threads in your use-case – at least not directly. Threads are actually pretty low-level primitives. For your specific use-case, there’s a component called BackgroundWorker which abstracts many of the low-level details of thread management for you.
If you have a multi threaded application (say four threads) on a quadcore processor then does each thread execute on different cores?
Not necessarily; again, the application has next to no control over how exactly its threads are executed; the operating system however tries really hard to schedule threads “smartly”. This means that in practice, if your application has several busy threads, they are spread out as evenly as possible across the available cores. In particular, if there are no more threads than cores then each thread gets its own core.
Generally, you do not need to worry about mapping to physical architecture, .NET and the OS will do their best to maximize efficiency of your application. Just make it multi-threaded, even at the cost of being slower on a single threaded computer. You can, however, limit your maximum number of threads (if your app theoretically scales to infinity), to a number of cores, or double that. Test performance for each case, and decide which maximum works best for you.
Sometimes setting a core # can make your app's performance even worse. For example, if core #1 is currently scanning your PC for viruses, and your antivirus is single threaded. With the above scenario, assuming a quad-core PC, you do NOT want to run your 4-threaded app on a 1-per-core basis.
Having said that, if you really want to run a thread on specific core, it is possible - see this:
How to start a Thread at Specific Core
How Can I Set Processor Affinity in .NET?
Also check this out:
How to control which core a process runs on?

High CPU utilization - VB.NET

We are facing an issue with VB.NET listeners that utilizes high CPU (50% to 70%) in the server machine where it is running. Listeners are using a threading concept and also we used FileSystemWatcher class to keep monitoring the file renaming pointing to one common location. Both are console applications and scheduled jobs running all the day.
How can I control the CPU utilization with this FileSystemWatcher class?
This could all depend on the code you are running.
For instance if you have a timer with an interval of 10ms but only do work every two minutes and on each timer interval you do a lot of checking this will take a lot of CPU to do nothing.
If you are using multiple threads and one is looping waiting for the second to release a lock (Monitor.TryEnter()) then again this may be taking up extra CPU. You can avoid this by putting the waiting thread into Monitor.Wait() and then when the busy thread is finished do Monitor.Pulse().
Apart for the very general advice above, if you post the key parts of your code or profile results then we may be able to help more.
If you are looking for a profiler we use RedGates ANTS Profiler (costs but with a free trial) and it give good results, I haven't used any other to compare (and I am in no way affiliated with RedGate) so others may be better.