So I have a function that takes two MKMapRect's and the second intersects with the first one. So the function creates an MKPolygon that is the first rect without the intersecting parts:
-(void) polygons:(MKMapRect)fullRect exclude:(MKMapRect)excludeArea{
NSLog(#"Y is: %f height: %f",excludeArea.origin.y,excludeArea.size.height);
double top = excludeArea.origin.y - fullRect.origin.y;
double lft = excludeArea.origin.x - fullRect.origin.x;
double btm = (fullRect.origin.y + fullRect.size.height) - (excludeArea.origin.y + excludeArea.size.height);
double rgt = (fullRect.origin.x + fullRect.size.width) - (excludeArea.origin.x + excludeArea.size.width);
double ot = fullRect.origin.y, it = (ot + top);
double ol = fullRect.origin.x, il = (ol + lft);
double ob = (fullRect.origin.y + fullRect.size.height), ib = (ob - btm);
double or = (fullRect.origin.x + fullRect.size.width), ir = (or - rgt);
MKMapPoint points[11] = {{ol,it}, {ol,ot}, {or,ot}, {or,ob}, {ol,ob}, {ol,it}, {il,it}, {ir,it}, {ir,ib}, {il,ib}, {il,it}};
MKPolygon *polygon = [MKPolygon polygonWithPoints:points count:11];
}
And my question is now how do I get the minimum number of MKMapRects from this MKPolygon? I have done some googling as well as looking through the forum but havn't found anything.
EDIT:
So the goal is the following:
I have a MKMapRect rect1, then I have a list of rectangles, rectList, which is MKMapRects intersecting with rect1 and what I want to do is create a rectilinear MKPolygon of rect1, remove the surface of all MKMapRects in rectList from rect1 and then create the minimum number of MKMaprects from the created rectilinear MKPolygon.
Right now the problem is the following: I am able to create a polygon when removing one MKMapRect from rect1 but I dont know how to remove the following maprects from rect1 and I dont know how to extract the minimum set of MkMapRects from the polygon created.
Best regards
Peep
I'm not sure if this is what you're looking for or if I understand the question fully, but if all you need to know is the minimum number of rectangles in a polygon that's created by subtracting one rectangle from another you should be able to do it by checking the number of corner points in the second rectangle that are contained in the first rectangle. In pseudo code:
int minNumRects(MKRect r1, MKRect r2) {
int numPointsContained = 0;
for (Point p in r2) {
if (MKMapRectContainsPoint(r1, p)) {
numPointsContained++;
}
}
if (numPointsContained == 1) {
return 2;
} else if (numPointsContained == 2) {
return 3;
} else if (numPointsContained == 4) {
return 4;
} else {
return 0;
}
}
P.S. - This assumes that the rectangles are axis-aligned but as far as I know that's the case with MKRects
Related
I'm trying to do wall collision for objects and I've followed a tutorial that offers one method of doing collision.
This is the tutorial: https://www.youtube.com/watch?v=yZU1QJJdxgs
Currently, if the object detects a wall, instead of moving it's full distance, it moves pixel by pixel until it's against the wall. This worked well until I started trying to rotate the object with image_rotate, because it caused objects to get stuck in walls by either sliding against them or if they rotated into them.
I fixed this by using draw_sprite_ext instead and changing the rotation of the sprite itself and not the mask, which worked for about 20 minutes until it started causing more problems.
///obj_player Step
//Initialise Variables
hor_speed = 0;
ver_speed = 0;
accelerationspeed = 0.2;
decelerationspeed = 0.2;
maxspeed = 3;
pointdirection = 0;
//Get player's input
key_right = keyboard_check(ord("D"))
key_left = -keyboard_check(ord("A"))
key_up = -keyboard_check(ord("W"))
key_down = keyboard_check(ord("S"))
pointdirection = point_direction(x,y,mouse_x,mouse_y) + 270
hor_movement = key_left + key_right;
ver_movement = key_up + key_down;
//horizontal acceleration
if !(abs(hor_speed) >= maxspeed) {
hor_speed += hor_movement * accelerationspeed;
}
//horizontal deceleration
if (hor_movement = 0) {
if !(hor_speed = 0) {
hor_speed -= (sign(hor_speed) * decelerationspeed)
}
}
//vertical acceleration
if !(abs(ver_speed) >= maxspeed) {
ver_speed += ver_movement * accelerationspeed;
}
//vertical deceleration
if (ver_movement = 0) {
if !(ver_speed = 0) {
ver_speed -= (sign(ver_speed) * decelerationspeed)
}
}
//horizontal collision
if (place_meeting(x+hor_speed,y,obj_wall)) {
while(!place_meeting(x+sign(hor_speed),y,obj_wall)) {
x += sign(hor_speed);
}
hor_speed = 0;
}
//vertical collision
if (place_meeting(x,y+ver_speed,obj_wall)) {
while(!place_meeting(x,y+sign(ver_speed),obj_wall)) {
y += sign(ver_speed);
}
ver_speed = 0;
}
//move the player
x += hor_speed;
y += ver_speed;
///obj_player Draw
//rotate to look at cursor
draw_sprite_ext(spr_player, 0, x,y,image_xscale,image_yscale, pointdirection, image_blend, image_alpha);
I think the best way to rotate objects is through image_rotate, and I'd like to do it without getting stuff stuck in walls. Can my current method of collision be adapted to do this, or should I attempt to do it in a different way?
Your code looks fine, but if you're going to be rotating objects then you would also need to consider having a "knock back mechanic." Reason being is the player could be sitting next to this wall and if you rotate the object over them so they cant move, its not a fun time being stuck.
So you 'could' have the object that's rotating do a check before rotating and if objects are in the way then either stop it or push them back so they cant be within range.
I have a rectangle with a sprite on it and I have to detect if the touch position lies within the rectangle.
This is my code,
if (Gdx.input.isTouched())
{
int x1 = Gdx.input.getX();
int y1 = Gdx.input.getY();
Vector3 inputs = new Vector3(x1, y1, 0);
gamecam.unproject(inputs);
Gdx.app.log("x" + inputs.x, "y" + inputs.y);
Gdx.app.log("rect" + rectangle.x, "rect" + rectangle.y);
if(rectangle.contains(inputs.x,inputs.y))
{
Gdx.app.log("x" + inputs.x, "y" + inputs.y);
Gdx.app.log("rect" + rectangle, "rect" + rectangle.y);
}
}
Rectangle definition,
BodyDef bdef = new BodyDef();
bdef.type = BodyDef.BodyType.StaticBody;
b2body = screen.getWorld().createBody(bdef);
rectangle = new Rectangle();
rectangle.setHeight(55);
rectangle.setWidth(55);
PolygonShape head = new PolygonShape();
rectangle.setX(300);
rectangle.setY(10);
bdef.position.set((rectangle.getX() - rectangle.getWidth() / 2) / MyJungleGame.PPM, (rectangle.getY() - rectangle.getHeight() / 2) / MyJungleGame.PPM);
head.setAsBox(rectangle.getWidth() / 2 / MyJungleGame.PPM, rectangle.getHeight() / 2 / MyJungleGame.PPM);
FixtureDef fdef = new FixtureDef();
fdef.shape = head;
setPosition(b2body.getPosition().x - getWidth() / 2, b2body.getPosition().y - getHeight() / 2);
This is my output,
The small rectangle at the bottom of the screen is the rectangle I created. But, nothing happens when I click it. I checked the coordinates and here is the log,
x-0.925: y-0.5625
rect300.0: rect10.0
x-0.925: y-0.5625
rect300.0: rect10.0
x-0.925: y-0.5625
I tried checking the touch using the below method,
if (inputs.x > sprite.getX() && inputs.x < sprite.getX() + sprite.getWidth())
{
if (inputs.y > sprite.getY() && inputs.y < sprite.getY() + sprite.getHeight())
{
Gdx.app.log("sprite touched", "");
}
}
This too doesn't work. Any idea where I made the mistake ? Please help . Thanks in advance
Since you are using Box2D, to detect collisions via the common way is more complicated to new users.
However, looking on your code...
I would advice taking this coordinates in consideration with PPM of your world :
int x1 = Gdx.input.getX();
int y1 = Gdx.input.getY();
Vector3 inputs = new Vector3(x1, y1, 0);
Also, If you are going to build a collision system with box2d, you should use this : http://www.aurelienribon.com/blog/2011/07/box2d-tutorial-collision-filtering/
Need your help, I have input CGSize (for example): 200x300. And array with other CGSize's = [20x20, 100x100, 150x150, 200x100, 200x250, 300x300...].
Please help me to find best item in array that have best compare percentage (for example its 200x250)...
I tried to use for enumerator, for example:
CGSize inputSize = CGSizeMake(200, 300);
for (int i = 0; i < array.count; i++)
{
CGSize concurentSize = CGSizeZero;
switch (i)
{
case 0:
{
concurentSize.width = 20;
concurentSize.height = 20;
}
and so on...
float differencePercentWidth = ( concurentSize.width / inputSize.width ) * 100.0;
float differencePercentHeight = ( concurentSize.height / inputSize.height ) * 100.0;
if (differencePercentWidth > 90 && differencePercentHeight > 90)
{
// FOUND best CGSize... stop
break.
}
}
But, its not working, it differencePercentWidth/differencePercentHeight can be > 100 =(
I need some of method or function that can compare 2 CGSize's in percent match... For example: size 200x300 is best matches with size 200x250... Something like:
float matchesInPerсent = CGSizeCompare(firstCGSize, secondCGSize);
//matchesInPerсent = 0.6; // in percents
Please help, sorry for my english, if you need more details, please let me know. Thanks.
Try the similar logic to calculate the maximum number in the array, but need to less then one finite value. In this cases calculate maximum percentage average of size.width and size.height, the maximum percentage which is closes to 1 is the winner. If you need the upper value of the 100% as well then you need to insert the logic to take that value below the 100% and run the same logic on those sizes as well.
Here is code which will give you closest percentage size from the array.
/*
sizes : array of the sizes represented in NSValue format
size: The size for which you need closest value.
*/
- (CGSize)bestMatch:(NSArray *)sizes withSize:(CGSize)size {
float bestMatch = 0.0;
CGSize bestMatchSize = CGSizeZero;
for (NSValue *value in sizes) {
float percentage = (value.CGSizeValue.width/size.width + value.CGSizeValue.height/size.height)/2;
//If you need greater then 100% and closes to the size
if (percentage > 1.0) {
percentage = -1*(percentage - 2);
}
if (bestMatch < percentage && percentage < 1) {
bestMatch = percentage;
bestMatchSize = value.CGSizeValue;
}
}
//If you need best match you can return bestMatch which is closest in percentage
return bestMatchSize;
}
I've looked up some formulas relating to finding the distance a point and a line. On this page, I used example 14
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
I have a method that has turned into this:
+(bool) checkPointNearBetweenPointsWithPointA:(CGPoint)pointA withPointB:(CGPoint)pointB withPointC:(CGPoint)pointC withLimit:(float)limit {
float A = pointB.x - pointA.x;
float B = pointA.y - pointC.y;
float C = pointA.x - pointC.x;
float D = pointB.y - pointA.y;
float dividend = fabs( A * B ) - ( C * D );
float divisor = sqrt(pow(A,2) + pow(D,2));
float distanceBetweenPointAndLine = dividend / divisor;
if(distanceBetweenPointAndLine < limit){
NSLog(#"distanceBetweenPointAndLine = %f",distanceBetweenPointAndLine);
return YES;
}
return NO;
}
The problem is that it still returns YES if I'm passed point B, if the line segment is drawn like B----A. Other screwed up things happen to depending on which angle the line is drawn. Just wondering if I need to consider anything else if testing to see if a point is near a finite line. Most examples I see online deal with lines of infinite length.
try my code below. line is considered to exist between points A & B (regardless of how you draw it B->A or A->B ) and point C is the point in consideration to measure the distance.
+ (bool) checkPointNearBetweenPointsWithPointA:(CGPoint)pointA
withPointB:(CGPoint)pointB
withPointC:(CGPoint)pointC
withLimit:(float)limit
{
CGFloat slopeLine = atan((pointB.y-pointA.y)/(pointB.x-pointA.x) );
CGFloat slopePointToPointA = -1 *atan((pointC.y-pointA.y)/(pointC.x-pointA.x));
CGFloat innerAngle = slopeLine + slopePointToPointA;
CGFloat distanceAC = sqrtf(pow(pointC.y-pointA.y,2) + pow(pointC.x-pointA.x,2));
CGFloat distanceBetweenPointAndLine = fabs(distanceAC * sin(innerAngle));
NSLog(#"distanceBetweenPointAndLine = %f",distanceBetweenPointAndLine);
NSLog(#"is exceeding limit ? %#",distanceBetweenPointAndLine > limit ? #"YES":#"NO");
if(distanceBetweenPointAndLine < limit)
{
return YES;
}
return NO;
}
I am working on Kinect for my research project . I have worked previously to calculate the joint angle of kinect and the joint coordinates. I would like to calculate the center of mass of the body which is being tracked.
Any idea would be appreciated and code snippets would be immensely helpful.
I owe a lot to stack overflow without the community help it would had not been possible to do such a thing.
Thanks in Advance
Please find the code where i want to include this center of mass function. This function tracks the skeleton.
Skeleton GetFirstSkeleton(AllFramesReadyEventArgs e)
{
using (SkeletonFrame skeletonFrameData = e.OpenSkeletonFrame())
{
if (skeletonFrameData == null)
{
return null;
}
skeletonFrameData.CopySkeletonDataTo(allSkeletons);
//get the first tracked skeleton
Skeleton first = (from s in allSkeletons
where s.TrackingState == SkeletonTrackingState.Tracked
select s).FirstOrDefault();
return first;
}
I have tried using this code in my code but its not getting accustomed , can any one please help me include the center of mass code.
oreach (SkeletonData data in skeletonFrame.Skeletons) {
SkeletonFrame allskeleton = e.SkeletonFrame;
// Count passive and active person up to six in the group
int numberOfSkeletonsT = (from s in allskeleton.Skeletons
where s.TrackingState == SkeletonTrackingState.Tracked select s).Count();
int numberOfSkeletonsP = (from s in allskeleton.Skeletons
where s.TrackingState == SkeletonTrackingState.PositionOnly select s).Count();
// Count passive and active person up to six in the group
int totalSkeletons = numberOfSkeletonsP + numberOfSkeletonsT;
//Console.WriteLine("TotalSkeletons = " + totalSkeletons);
//======================================================
if (data.TrackingState == SkeletonTrackingState.PositionOnly)
{
foreach (Joint joint in data.Joints)
{
if (joint.Position.Z != 0)
{
double centerofmassX = com.Position.X;
double centerofmassY = com.Position.Y;
double centerofmassZ = com.Position.Z;
Console.WriteLine( centerofmassX + centerofmassY + centerofmassZ );
}
}
See a couple of resources here:
http://mathwiki.ucdavis.edu/Calculus/Vector_Calculus/Multiple_Integrals/Moments_and_Centers_of_Mass#Three-Dimensional_Solids
http://www.slideshare.net/GillianWinters/center-of-mass-presentation
http://en.wikipedia.org/wiki/Locating_the_center_of_mass
Basically no matter what, you are going to need to find the mass of your user. This can be a simple input, then you can determine how much weight the person puts on each foot and use the equations described at all of these sources. Another option may be to use plumb lines on a planar shape representation of the user in 2D, However that won't be the actually accurate 3D center of mass.
Here is an example of how to find what amount of mass is on each foot. using the equation found on http://www.vitutor.com/geometry/distance/line_plane.html
Vector3 v = new Vector3(skeleton.Joints[JointType.Head].Position.X, skeleton.Joints[JointType.Head].Position.Y, skeleton.Joints[JointType.Head].Position.Z);
double mass;
double leftM, rightM;
double A = sFrame.FloorClipPlane.X,
B = sFrame.FloorClipPlane.Y,
C = sFrame.FloorClipPlane.Z;
//find angle
double angle = Math.ASin(Math.Abs(A * v.X + B * v.Y * C * v.Z)/(Math.Sqrt(A * A + B * B + C * C) * Math.Sqrt(v.X * v.X + v.Y * v.Y + v.Z * v.Z)));
if (angle == 90.0)
{
leftM = mass / 2.0;
rightM = mass / 2.0;
}
double distanceFrom90 = 90.0 - angle;
if (distanceFrom90 > 0)
{
double leftMultiple = distanceFrom90 / 90.0;
leftM = mass * leftMultiple;
rightM = mass - leftM;
}
else
{
double rightMultiple = distanceFrom90 / 90.0;
rightM = rightMultiple * mass;
leftM = mass - rightMultiple;
}
This is of course assuming that the user is on both feet, but you could modify the code to create a new plane based off the users feet instead of the automatic one generated by Kinect.
The code to then find the center of mass you have to choose a datum. I would choose the head as that is the top of the person, and you can measure down from it easily. Using the steps found here:
double distanceFromDatumLeft = Math.Sqrt(Math.Pow(headX - footLeftX, 2) + Math.Pow(headY - footLeftY, 2) + Math.Pow(headZ - footLeftZ, 2));
double distanceFromDatumLeft = Math.Sqrt(Math.Pow(headX - footRightX, 2) + Math.Pow(headY - footRightY, 2) + Math.Pow(headZ - footRightZ, 2));
double momentLeft = distanceFromDatumLeft * leftM;
double momentRight = distanceFromDatumRight * rightM;
double momentSum = momentLeft + momentRight;
//measured in units from the datum
double centerOfGravity = momentSum / mass;
You then can of course show this on the screen by passing a point to plot that is centerOfGravity points below the head.