how to separate parts of long mathematical algorithm? - oop

I have several pages of code. It's pretty ugly because it's doing a lot of "calculation" etc. But it contains of several phases, like many algorthims, like that:
calculate orders I want to leave
kill orders I want to leave but I can't leave because of volume restrictions
calculate orders I want to add
kill other orders I want to leave but I can't because of new orders
adjust new orders ammount to fit desired volume
Totally I have 5 pages of ugly code which I want to separate at least by stage. But I don't want to introduce separate method for each stage, because these stages make sense only together, stage itself is useless so I think it would be wrong to create separate method for each stage.
I think I should use c# #region for separation, what do you think, will you suggest something better?

Use private methods to seperate logic into small tasks, even if said logic is only used in one place, it increases readability of code by a lot.

Avoid #region directives for this purpose, they only sweep dirt under the carpet.
I second #RasmusFranke's advice, divide et impera: while separating functionalities into methods you may notice that a bunch of methods happen to represent a concept which is class-worthy, then you can move the methods in a new class. Reusability is not the only reason to create methods.
Refactor, refactor, refactor. Keep in mind principles like SOLID while using techniques from Refactoring and Working Effectively with Legacy Code.
Take it slow and use if you can tools like Resharper or Refactor! Pro which help to minimize mistakes that could occur while refactoring.
Use your tests to check if you broke anything, especially if you do not have access to the previously mentioned tools or if you are doing some major refactoring. If you don't have tests try to write some, even if it may be daunting to write tests for legacy code.
Last but not least, do not touch it if you don't need to. If it works but it is "ugly" and it is not a part of your code needing changes, let it be.

Related

Is it better to use a boolean variable to replace an if condition for readability or not?

I am in the second year of my bachelor study in information technology. Last year in one of my courses they taught me to write clean code so other programmers have an easier time working with your code. I learned a lot about writing clean code from a video ("clean code") on pluralsight (paid website for learning which my school uses). There was an example in there about assigning if conditions to boolean variables and using them to enhance readability. In my course today my teacher told me it's very bad code because it decreases performance (in bigger programs) due to increased tests being executed. I was wondering now whether I should continue using boolean variables for readability or not use them for performance. I will illustrate in an example (I am using python code for this example):
example boolean variable
Let's say we need to check whether somebody is legal to drink alcohol we get the persons age and we know the legal drinking age is 21.
is_old_enough = persons_age >= legal_drinking_age
if is_old_enough:
do something
My teacher told me today that this would be very bad for performance since 2 tests are performed first persons_age >= legal_drinking_age is tested and secondly in the if another test occurs whether the person is_old_enough.
My teacher told me that I should just put the condition in the if, but in the video they said that code should be read like natural language to make it clear for other programmers. I was wondering now which would be the better coding practice.
example condition in if:
if persons_age >= legal_drinking_age:
do something
In this example only 1 test is tested whether persons_age >= legal_drinking_age. According to my teacher this is better code.
Thank you in advance!
yours faithfully
Jonas
I was wondering now which would be the better coding practice.
The real safe answer is : Depends..
I hate to use this answer, but you won't be asking unless you have faithful doubt. (:
IMHO:
If the code will be used for long-term use, where maintainability is important, then a clearly readable code is preferred.
If the program speed performance crucial, then any code operation that use less resource (smaller dataSize/dataType /less loop needed to achieve the same thing/ optimized task sequencing/maximize cpu task per clock cycle/ reduced data re-loading cycle) is better. (example keyword : space-for-time code)
If the program minimizing memory usage is crucial, then any code operation that use less storage and memory resource to complete its operation (which may take more cpu cycle/loop for the same task) is better. (example: small devices that have limited data storage/RAM)
If you are in a race, then you may what to code as short as possible, (even if it may take a slightly longer cpu time later). example : Hackathon
If you are programming to teach a team of student/friend something.. Then readable code + a lot of comment is definitely preferred .
If it is me.. I'll stick to anything closest to assembly language as possible (as much control on the bit manipulation) for backend development. and anything closest to mathematica-like code (less code, max output, don't really care how much cpu/memory resource is needed) for frontend development. ( :
So.. If it is you.. you may have your own requirement/preference.. from the user/outsiders/customers point of view.. it is just a working/notWorking program. YOur definition of good program may defer from others.. but this shouldn't stop us to be flexible in the coding style/method.
Happy exploring. Hope it helps.. in any way possible.
Performance
Performance is one of the least interesting concerns for this question, and I say this as one working in very performance-critical areas like image processing and raytracing who believes in effective micro-optimizations (but my ideas of effective micro-optimization would be things like improving memory access patterns and memory layouts for cache efficiency, not eliminating temporary variables out of fear that your compiler or interpreter might allocate additional registers and/or utilize additional instructions).
The reason it's not so interesting is, because, as pointed out in the comments, any decent optimizing compiler is going to treat those two you wrote as equivalent by the time it finishes optimizing the intermediate representation and generates the final results of the instruction selection/register allocation to produce the final output (machine code). And if you aren't using a decent optimizing compiler, then this sort of microscopic efficiency is probably the last thing you should be worrying about either way.
Variable Scopes
With performance aside, the only concern I'd have with this convention, and I think it's generally a good one to apply liberally, is for languages that don't have a concept of a named constant to distinguish it from a variable.
In those cases, the more variables you introduce to a meaty function, the more intellectual overhead it can have as the number of variables with a relatively wide scope increases, and that can translate to practical burdens in maintenance and debugging in extreme cases. If you imagine a case like this:
some_variable = ...
...
some_other_variable = ...
...
yet_another_variable = ...
(300 lines more code to the function)
... in some function, and you're trying to debug it, then those variables combined with the monstrous size of the function starts to multiply the difficulty of trying to figure out what went wrong. That's a practical concern I've encountered when debugging codebases spanning millions of lines of code written by all sorts of people (including those no longer on the team) where it's not so fun to look at the locals watch window in a debugger and see two pages worth of variables in some monstrous function that appears to be doing something incorrectly (or in one of the functions it calls).
But that's only an issue when it's combined with questionable programming practices like writing functions that span hundreds or thousands of lines of code. In those cases it will often improve everything just focusing on making reasonable-sized functions that perform one clear logical operation and don't have more than one side effect (or none ideally if the function can be programmed as a pure function). If you design your functions reasonably then I wouldn't worry about this at all and favor whatever is readable and easiest to comprehend at a glance and maybe even what is most writable and "pliable" (to make changes to the function easier if you anticipate a future need).
A Pragmatic View on Variable Scopes
So I think a lot of programming concepts can be understood to some degree by just understanding the need to narrow variable scopes. People say avoid global variables like the plague. We can go into issues with how that shared state can interfere with multithreading and how it makes programs difficult to change and debug, but you can understand a lot of the problems just through the desire to narrow variable scopes. If you have a codebase which spans a hundred thousand lines of code, then a global variable is going to have the scope of a hundred thousands of lines of code for both access and modification, and crudely speaking a hundred thousand ways to go wrong.
At the same time that pragmatic sort of view will find it pointless to make a one-shot program which only spans 100 lines of code with no future need for extension avoid global variables like the plague, since a global here is only going to have 100 lines worth of scope, so to speak. Meanwhile even someone who avoids those like the plague in all contexts might still write a class with member variables (including some superfluous ones for "convenience") whose implementation spans 8,000 lines of code, at which point those variables have a much wider scope than even the global variable in the former example, and this realization could drive someone to design smaller classes and/or reduce the number of superfluous member variables to include as part of the state management for the class (which can also translate to simplified multithreading and all the similar types of benefits of avoiding global variables in some non-trivial codebase).
And finally it'll tend to tempt you to write smaller functions as well, since a variable towards the top of some function spanning 500 lines of code is going to also have a fairly wide scope. So anyway, my only concern when you do this is to not let the scope of those temporary, local variables get too wide. And if they do, then the general answer is not necessarily to avoid those variables but to narrow their scope.

How to quickly analyse the impact of a program change?

Lately I need to do an impact analysis on changing a DB column definition of a widely used table (like PRODUCT, USER, etc). I find it is a very time consuming, boring and difficult task. I would like to ask if there is any known methodology to do so?
The question also apply to changes on application, file system, search engine, etc. At first, I thought this kind of functional relationship should be pre-documented or some how keep tracked, but then I realize that everything can have changes, it would be impossible to do so.
I don't even know what should be tagged to this question, please help.
Sorry for my poor English.
Sure. One can technically at least know what code touches the DB column (reads or writes it), by determining program slices.
Methodology: Find all SQL code elements in your sources. Determine which ones touch the column in question. (Careful: SELECT ALL may touch your column, so you need to know the schema). Determine which variables read or write that column. Follow those variables wherever they go, and determine the code and variables they affect; follow all those variables too. (This amounts to computing a forward slice). Likewise, find the sources of the variables used to fill the column; follow them back to their code and sources, and follow those variables too. (This amounts to computing a backward slice).
All the elements of the slice are potentially affecting/affected by a change. There may be conditions in the slice-selected code that are clearly outside the conditions expected by your new use case, and you can eliminate that code from consideration. Everything else in the slices you may have inspect/modify to make your change.
Now, your change may affect some other code (e.g., a new place to use the DB column, or combine the value from the DB column with some other value). You'll want to inspect up and downstream slices on the code you change too.
You can apply this process for any change you might make to the code base, not just DB columns.
Manually this is not easy to do in a big code base, and it certainly isn't quick. There is some automation to do for C and C++ code, but not much for other languages.
You can get a bad approximation by running test cases that involve you desired variable or action, and inspecting the test coverage. (Your approximation gets better if you run test cases you are sure does NOT cover your desired variable or action, and eliminating all the code it covers).
Eventually this task cannot be automated or reduced to an algorithm, otherwise there would be a tool to preview refactored changes. The better you wrote code in the beginning, the easier the task.
Let me explain how to reach the answer: isolation is the key. Mapping everything to object properties can help you automate your review.
I can give you an example. If you can manage to map your specific case to the below, it will save your life.
The OR/M change pattern
Like Hibernate or Entity Framework...
A change to a database column may be simply previewed by analysing what code uses a certain object's property. Since all DB columns are mapped to object properties, and assuming no code uses pure SQL, you are good to go for your estimations
This is a very simple pattern for change management.
In order to reduce a file system/network or data file issue to the above pattern you need other software patterns implemented. I mean, if you can reduce a complex scenario to a change in your objects' properties, you can leverage your IDE to detect the changes for you, including code that needs a slight modification to compile or needs to be rewritten at all.
If you want to manage a change in a remote service when you initially write your software, wrap that service in an interface. So you will only have to modify its implementation
If you want to manage a possible change in a data file format (e.g. length of field change in positional format, column reordering), write a service that maps that file to object (like using BeanIO parser)
If you want to manage a possible change in file system paths, design your application to use more runtime variables
If you want to manage a possible change in cryptography algorithms, wrap them in services (e.g. HashService, CryptoService, SignService)
If you do the above, your manual requirements review will be easier. Because the overall task is manual, but can be aided with automated tools. You can try to change the name of a class's property and see its side effects in the compiler
Worst case
Obviously if you need to change the name, type and length of a specific column in a database in a software with plain SQL hardcoded and shattered in multiple places around the code, and worse many tables present similar column namings, plus without project documentation (did I write worst case, right?) of a total of 10000+ classes, you have no other way than manually exploring your project, using find tools but not relying on them.
And if you don't have a test plan, which is the document from which you can hope to originate a software test suite, it will be time to make one.
Just adding my 2 cents. I'm assuming you're working in a production environment so there's got to be some form of unit tests, integration tests and system tests already written.
If yes, then a good way to validate your changes is to run all these tests again and create any new tests which might be necessary.
And to state the obvious, do not integrate your code changes into the main production code base without running these tests.
Yet again changes which worked fine in a test environment may not work in a production environment.
Have some form of source code configuration management system like Subversion, GitHub, CVS etc.
This enables you to roll back your changes

For really complex reports, do people sometimes code in their language rather than in sql?

I have some pretty complex reports to write. Some of them... I'm not sure how I could write an sql query for just one of the values, let alone stuff them in a single query.
Is it common to just pull a crap load of data and figure it all via code instead? Or should I try and find a way to make all the reports rely on sql?
I have a very rich domain model. In fact, parts of code can be expanded on to calculate exactly what they want. The actual logic is not all that difficult to write - and it's nicer to work my domain model than with SQL. With SQL, writing the business logic, refactoring it, testing it and putting it version control is a royal pain because it's separate from your actual code.
For example, one the statistics they want is the % of how much they improved, especially in relation to other people in the same class, the same school, and compared to other schools. This requires some pretty detailed analysis of how they performed in the past to their latest information, as well as doing a calculation for the groups you are comparing against as a whole. I can't even imagine what the sql query would even look like.
The thing is, this % improvement is not a column in the database - it involves a big calculation in of itself by analyzing all the live data in real-time. There is no way to cache this data in a column as doing this calculation for every row it's needed every time the student does something is CRAZY.
I'm a little afraid about pulling out hundreds upon hundreds of records to get these numbers though. I may have to pull out that many just to figure out 1 value for 1 user... and if they want a report for all the users on a single screen, it's going to basically take analyzing the entire database. And that's just 1 column of values of many columns that they want on the report!
Basically, the report they want is a massive performance hog no matter what method I choose to write it.
Anyway, I'd like to ask you what kind of solutions you've used to these kind of a problems.
Sometimes a report can be generated by a single query. Sometimes some procedural code has to be written. And sometimes, even though a single query CAN be used, it's much better/faster/clearer to write a bit of procedural code.
Case in point - another developer at work wrote a report that used a single query. That query was amazing - turned a table sideways, did some amazing summation stuff - and may well have piped the output through hyperspace - truly a work of art. I couldn't have even conceived of doing something like that and learned a lot just from readying through it. It's only problem was that it took 45 minutes to run and brought the system to its knees in the process. I loved that query...but in the end...I admit it - I killed it. ((sob!)) I dismembered it with a chainsaw while humming "Highway To Hell"! I...I wrote a little procedural code to cover my tracks and...nobody noticed. I'd like to say I was sorry, but...in the end the job ran in 30 seconds. Oh, sure, it's easy enough to say "But performance matters, y'know"...but...I loved that query... ((sniffle...)) Anybody seen my chainsaw..? >;->
The point of the above is "Make Things As Simple As You Can, But No Simpler". If you find yourself with a query that covers three pages (I loved that query, but...) maybe it's trying to tell you something. A much simpler query and some procedural code may take up about the same space, page-wise, but could possibly be much easier to understand and maintain.
Share and enjoy.
Sounds like a challenging task you have ahead of you. I don't know all the details, but I think I would go at it from several directions:
Prioritize: You should try to negotiate with the "customer" and prioritize functionality. Chances are not everything is equally useful for them.
Manage expectations: If they have unrealistic expectations then tell them so in a nice way.
IMHO SQL is good in many respects, but it's not a brilliant programming language. So I'd rather just do calculations in the application rather than in the database.
I think I'd go for some delay in the system .. perhaps by caching calculated results for some minutes before recalculating. This is with a mind towards performance.
The short answer: for analysing large quantities of data, a SQL database is probably the best tool around.
However, that does not mean you should analyse this straight off your production database. I suggest you look into Datawarehousing.
For a one-off report, I'll write the code to produce it in whatever I can best reason about it in.
For a report that'll be generated more than once, I'll check on who is going to be producing it the next time. I'll still write the code in whatever I can best reason about it in, but I might add something to make it more attractive to use to that other person.
People usually use a third party report writing system rather than writing SQL. As an application developer, if you're spending a lot of time writing complex reports, I would severely question your manager's actions in NOT buying an off-the-shelf solution and letting less-skilled people build their own reports using some GUI.

What techniques are available for memory optimizing in 8051 assembly language?

I need to optimize code to get room for some new code. I do not have the space for all the changes. I can not use code bank switching (80c31 with 64k).
You haven't really given a lot to go on here, but there are two main levels of optimizations you can consider:
Micro-Optimizations:
eg. XOR A instead of MOV A,0
Adam has covered some of these nicely earlier.
Macro-Optimizations:
Look at the structure of your program, the data structures and algorithms used, the tasks performed, and think VERY hard about how these could be rearranged or even removed. Are there whole chunks of code that actually aren't used? Is your code full of debug output statements that the user never sees? Are there functions specific to a single customer that you could leave out of a general release?
To get a good handle on that, you'll need to work out WHERE your memory is being used up. The Linker map is a good place to start with this. Macro-optimizations are where the BIG wins can be made.
As an aside, you could - seriously- try rewriting parts of your code with a good optimizing C compiler. You may be amazed at how tight the code can be. A true assembler hotshot may be able to improve on it, but it can easily be better than most coders. I used the IAR one about 20 years ago, and it blew my socks off.
With assembly language, you'll have to optimize by hand. Here are a few techniques:
Note: IANA8051P (I am not an 8501 programmer but I have done lots of assembly on other 8 bit chips).
Go through the code looking for any duplicated bits, no matter how small and make them functions.
Learn some of the more unusual instructions and see if you can use them to optimize, eg. A nice trick is to use XOR A to clear the accumulator instead of MOV A,0 - it saves a byte.
Another neat trick is if you call a function before returning, just jump to it eg, instead of:
CALL otherfunc
RET
Just do:
JMP otherfunc
Always make sure you are doing relative jumps and branches wherever possible, they use less memory than absolute jumps.
That's all I can think of off the top of my head for the moment.
Sorry I am coming to this late, but I once had exactly the same problem, and it became a repeated problem that kept coming back to me. In my case the project was a telephone, on an 8051 family processor, and I had totally maxed out the ROM (code) memory. It kept coming back to me because management kept requesting new features, so each new feature became a two step process. 1) Optimize old stuff to make room 2) Implement the new feature, using up the room I just made.
There are two approaches to optimization. Tactical and Strategical. Tactical optimizations save a few bytes at a time with a micro optimization idea. I think you need strategic optimizations which involve a more radical rethinking about how you are doing things.
Something I remember worked for me and could work for you;
Look at the essence of what your code has to do and try to distill out some really strong flexible primitive operations. Then rebuild your top level code so that it does nothing low level at all except call on the primitives. Ideally use a table based approach, your table contains stuff like; Input state, event, output state, primitives.... In other words when an event happens, look up a cell in the table for that event in the current state. That cell tells you what new state to change to (optionally) and what primitive(s) (if any) to execute. You might need multiple sets of states/events/tables/primitives for different layers/subsystems.
One of the many benefits of this approach is that you can think of it as building a custom language for your particular problem, in which you can very efficiently (i.e. with minimal extra code) create new functionality simply by modifying the table.
Sorry I am months late and you probably didn't have time to do something this radical anyway. For all I know you were already using a similar approach! But my answer might help someone else someday who knows.
In the whacked-out department, you could also consider compressing part of your code and only keeping some part that is actively used decompressed at any particular point in time. I have a hard time believing that the code required for the compress/decompress system would be small enough a portion of the tiny memory of the 8051 to make this worthwhile, but has worked wonders on slightly larger systems.
Yet another approach is to turn to a byte-code format or the kind of table-driven code that some state machine tools output -- having a machine understand what your app is doing and generating a completely incomprehensible implementation can be a great way to save room :)
Finally, if the code is indeed compiled in C, I would suggest compiling with a range of different options to see what happens. Also, I wrote a piece on compact C coding for the ESC back in 2001 that is still pretty current. See that text for other tricks for small machines.
1) Where possible save your variables in Idata not in xdata
2) Look at your Jmp statements – make use of SJmp and AJmp
I assume you know it won't fit because you wrote/complied and got the "out of memory" error. :) It appears the answers address your question pretty accurately; short of getting code examples.
I would, however, recommend a few additional thoughts;
Make sure all the code is really
being used -- code coverage test? An
unused sub is a big win -- this is a
tough step -- if you're the original
author, it may be easier -- (well, maybe) :)
Ensure the level of "verification"
and initialization -- sometimes we
have a tendency to be over zealous
in insuring we have initialized
variables/memory and sure enough
rightly so, how many times have we
been bitten by it. Not saying don't
initialize (duh), but if we're doing
a memory move, the destination
doesn't need to be zero'd first --
this dovetails with
1 --
Eval the new features -- can an
existing sub be be enhanced to cover
both functions or perhaps an
existing feature replaced?
Break up big code if a piece of the
big code can save creating a new
little code.
or perhaps there's an argument for hardware version 2.0 on the table now ... :)
regards
Besides the already mentioned (more or less) obvious optimizations, here is a really weird (and almost impossible to achieve) one: Code reuse. And with Code reuse I dont mean the normal reuse, but to a) reuse your code as data or b) to reuse your code as other code. Maybe you can create a lut (or whatever static data) that it can represented by the asm hex opcodes (here you have to look harvard vs von neumann architecture).
The other would reuse code by giving code a different meaning when you address it different. Here an example to make clear what I mean. If the bytes for your code look like this: AABCCCDDEEFFGGHH at address X where each letter stands for one opcode, imagine you would now jump to X+1. Maybe you get a complete different functionality where the now by space seperated bytes form the new opcodes: ABC CCD DE EF GH.
But beware: This is not only tricky to achieve (maybe its impossible), but its a horror to maintain. So if you are not a demo code (or something similiar exotic), I would recommend to use the already other mentioned ways to save mem.

Metrics & Object-oriented programming

I would like to know if somebody often uses metrics to validate its code/design.
As example, I think I will use:
number of lines per method (< 20)
number of variables per method (< 7)
number of paremeters per method (< 8)
number of methods per class (< 20)
number of field per class (< 20)
inheritance tree depth (< 6).
Lack of Cohesion in Methods
Most of these metrics are very simple.
What is your policy about this kind of mesure ? Do you use a tool to check their (e.g. NDepend) ?
Imposing numerical limits on those values (as you seem to imply with the numbers) is, in my opinion, not very good idea. The number of lines in a method could be very large if there is a significant switch statement, and yet the method is still simple and proper. The number of fields in a class can be appropriately very large if the fields are simple. And five levels of inheritance could be way too many, sometimes.
I think it is better to analyze the class cohesion (more is better) and coupling (less is better), but even then I am doubtful of the utility of such metrics. Experience is usually a better guide (though that is, admittedly, expensive).
A metric I didn't see in your list is McCabe's Cyclomatic Complexity. It measures the complexity of a given function, and has a correlation with bugginess. E.g. high complexity scores for a function indicate: 1) It is likely to be a buggy function and 2) It is likely to be hard to fix properly (e.g. fixes will introduce their own bugs).
Ultimately, metrics are best used at a gross level -- like control charts. You look for points above and below the control limits to identify likely special cases, then you look at the details. For example a function with a high cyclomatic complexity may cause you to look at it, only to discover that it is appropriate because it a dispatcher method with a number of cases.
management by metrics does not work for people or for code; no metrics or absolute values will always work. Please don't let a fascination with metrics distract from truly evaluating the quality of the code. Metrics may appear to tell you important things about the code, but the best they can do is hint at areas to investigate.
That is not to say that metrics are not useful. Metrics are most useful when they are changing, to look for areas that may be changing in unexpected ways. For example, if you suddenly go from 3 levels of inheritance to 15, or 4 parms per method to 12, dig in and figure out why.
example: a stored procedure to update a database table may have as many parameters as the table has columns; an object interface to this procedure may have the same, or it may have one if there is an object to represent the data entity. But the constructor for the data entity may have all of those parameters. So what would the metrics for this tell you? Not much! And if you have enough situations like this in the code base, the target averages will be blown out of the water.
So don't rely on metrics as absolute indicators of anything; there is no substitute for reading/reviewing the code.
Personally I think it's very difficult to adhere to these types of requirements (i.e. sometimes you just really need a method with more than 20 lines), but in the spirit of your question I'll mention some of the guidelines used in an essay called Object Calisthenics (part of the Thoughtworks Anthology if you're interested).
Levels of indentation per method (<2)
Number of 'dots' per line (<2)
Number of lines per class (<50)
Number of classes per package (<10)
Number of instance variances per class (<3)
He also advocates not using the 'else' keyword nor any getters or setters, but I think that's a bit overboard.
Hard numbers don't work for every solution. Some solutions are more complex than others. I would start with these as your guidelines and see where your project(s) end up.
But, regarding these number specifically, these numbers seem pretty high. I usually find in my particular coding style that I usually have:
no more than 3 parameters per method
signature about 5-10 lines per method
no more than 3 levels of inheritance
That isn't to say I never go over these generalities, but I usually think more about the code when I do because most of the time I can break things down.
As others have said, keeping to a strict standard is going to be tough. I think one of the most valuable uses of these metrics is to watch how they change as the application evolves. This helps to give you an idea how good a job you're doing on getting the necessary refactoring done as functionality is added, and helps prevent making a big mess :)
OO Metrics are a bit of a pet project for me (It was the subject of my master thesis). So yes I'm using these and I use a tool of my own.
For years the book "Object Oriented Software Metrics" by Mark Lorenz was the best resource for OO metrics. But recently I have seen more resources.
Unfortunately I have other deadlines so no time to work on the tool. But eventually I will be adding new metrics (and new language constructs).
Update
We are using the tool now to detect possible problems in the source. Several metrics we added (not all pure OO):
use of assert
use of magic constants
use of comments, in relation to the compelxity of methods
statement nesting level
class dependency
number of public fields in a class
relative number of overridden methods
use of goto statements
There are still more. We keep the ones that give a good image of the pain spots in the code. So we have direct feedback if these are corrected.