SELECT WHERE Date = Day - sql

I have a table with a column of type dateTime. I want to do a query that selects all rows that take place on that date. Basically,
SELECT * FROM Table
WHERE [timeStamp] = '02-15-2003'
But that only returns rows where [timeStamp] is '02-15-2003 00:00:00.000', but really I want rows from anytime that day.

If you have indexes, you are going to want something which doesn't prevent the indexes from being used:
SELECT *
FROM Table
WHERE [timeStamp] >= '20030215'
AND [timeStamp] < '20030216'
You can do a truncation operation on the [timeStamp] column to get rid of any time part (implementation dependent), but this can potentially hurt the execution plan. Unfortunately, you really have to look at the execution plan to see this, because sometimes the optimizer is clever about some functions and sometimes it isn't.

You should CAST to DATE if you're on SQL 2008.
select * from [Table]
where cast([timeStamp] as date) = '02-15-2003'
Best approach to remove time part of datetime in SQL Server
--- UPDATE ---
The word the commenters should have used back in 2012 to describe why this is not the optimal solution is sargability. Changing the data type in the WHERE clause, while the simplest solution, has implications for index usage that a bounded search would not.

 
in sql server 2008 + :
SELECT * FROM Table
        WHERE cast( [timeStamp] as date)  = '02-15-2003'
or
just ZERO the time part :  ( 2005+)
SELECT * FROM Table
WHERE DateAdd(day, DateDiff(day, 0, [timeStamp]), 0) = '02-15-2003'

MS SQL 2014, this works perfect:
SELECT [YourDateColumn] FROM [YourTable] WHERE(DATEPART(dd,[YourDateColumn]) = '29')
Might have some performance issues on very large DB's.

try this.. SQL SERVER
SELECT * FROM Table WHERE convert(date,[timestamp]) = '2003-02-15'
should return all rows on the specified day.

I would create a stored procedure that will accept "start date" and "end date"
In this case the start date and end date can be the same
This ensures that all rows from 12:01 AM to 11:59 PM are returned
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
Create PROCEDURE TestBetweenDates
-- Add the parameters for the stored procedure here
#StartDate DateTime = 0,
#EndDate DateTime = 0
AS
BEGIN
SET NOCOUNT ON;
SET #StartDate = cast(Convert(varchar(10), DateAdd(d, -6, #StartDate ), 101) + ' 12:01 AM' as datetime)
SET #EndDate = cast(Convert(varchar(10), DateAdd(d, -0, #EndDate), 101) + ' 11:59 PM' as datetime)
SELECT * FROM Table
WHERE ([timeStamp] BETWEEN #StartDate AND #EndDate)
END
GO

Date comparisons can be a tricky thing.
Remember that it is a datetime and not a string. This is why you got unexpected results.
For the specific query you have in mind, the appropriate query is
SELECT * FROM Table
WHERE 0 = datediff(day,[timestamp],'02-15-2003')
You may also do compares by month() and year() which return integer values.
You usually have to write custom functions to get comparisons that are non-trivial.
Also note
WHERE 0 = datediff(day,[timestamp],'02-15-2003')
is much better than
WHERE datediff(day,[timestamp],'02-15-2003') = 0
The former does not interfere with internal efficiency while the latter does.

Related

SQL Server DateDiff between two dates returns inaccurate values

I am trying to convert a string into DateTimeOffset (in SQL Server) through a ETL job. Basically, my string would look something like '2017-10-15' and I want this to be converted into a DatetimeOffset (from the current DB server).
SELECT
SWITCHOFFSET(DATEADD(mi, DATEDIFF(MI, GETDATE(), GETUTCDATE()), CAST(#DateInString + ' 00:00:00' AS DATETIMEOFFSET)), DATENAME(tzoffset, SYSDATETIMEOFFSET()))
I have been getting some weird issues with this statement as the final output would fall either +1 / -1 minute than the expected ones. This happens for at least every 10 records/million. I tried to nail down the issue and I could see the problem was with the DATEDIFF() method returning +/-1 minute.
SELECT DATEDIFF(MI, GETDATE(), GETUTCDATE())
This should exactly return -600 (since my DB server UTC is +10). However, it returns either -599 or 601 for few records. I execute them as a single select statement in my Stored Procedure and return it as a parameter.
This is weird on how SQL could detect two different datetime values for GETDATE() and GETUTCDATE() on the same select statement.
Is there a way to force SQL to get exactly same dates in those DATEDIFF parameters or am I missing something here? Thanks in advance
I am using SQL Server 2014 (v12.0).
Stored procedure:
CREATE PROCEDURE dbo.SPConvertDateTimeOffset
#DateInString VARCHAR(10),
#DateTimeOffset_Value DATETIMEOFFSET OUTPUT,
#Datediff_Value INT OUTPUT
AS
BEGIN
-- This line returns +/- 1
SELECT #Datediff_Value = DATEDIFF(MI, GETDATE(), GETUTCDATE())
SELECT #DateTimeOffset_Value = SWITCHOFFSET(DATEADD(mi, #Datediff_Value, CAST(#DateInString + ' 00:00:00' AS DATETIMEOFFSET)), DATENAME(tzoffset, SYSDATETIMEOFFSET()))
END
#GordonLinoff has explained why this happens: since functions are executed at slightly different times, they may return a different minute.
To work around, try this:
DECLARE #DateTimeOffset_Value Datetimeoffset
DECLARE #Datediff_Value INT, #DateInString VARCHAR( 10 )
SET #DateInString = CONVERT( VARCHAR, GETDATE(), 112 )
SET #DateTimeOffset_Value = TODATETIMEOFFSET( #DateInString, DATENAME(tzoffset,SYSDATETIMEOFFSET()))
SET #Datediff_Value = DATEDIFF( MI, #DateInString, #DateTimeOffset_Value )
SELECT #DateInString, #DateTimeOffset_Value, #Datediff_Value
It does not use current date comparisons.
Note: that during the time when day light saving changes you may get a different value from the expected, depending on when exactly the code was run.
Have a look at https://dba.stackexchange.com/questions/28187/how-can-i-get-the-correct-offset-between-utc-and-local-times-for-a-date-that-is for more solutions about how to handle DTS changes.
The two functions are not executed simultaneously. So about 1 time in 100,000 (in your test) the times are on opposite sides of a minute boundary.
If you just want the timezone, you could try:
select datepart(tz, SYSDATETIMEOFFSET())

SQL statement between date

This is driving me crazy and not sure what I'm missing here..
so here is my data column looks like:
StartDateTime:
---------------
2012-01-17 11:13:46.530
2012-01-17 11:17:22.530
2012-02-17 11:31:22.223
here is my query trying to get:
select * from tablName
where convert(varchar(10), startDateTime, 101) between '2012-01-17' and '2012-01-17'
based on the above I should be getting TWO rows? but it does not, it return zero rows. what will be the correct way of doing?
PS:
I've looked at the MSDN site too:
Your query would only match dates that are between 2012-01-17 00:00:00 and 2012-01-17 00:00:00. So, the only matches would be when the date is exactly 2012-01-17 00:00:00.
Instead, I would do this:
declare #dateInput as DateTime
set #dateInput = '2012-01-17'
select *
from tablName
where startDateTime >= #dateInput
and startDateTime < dateadd(day, 1, #dateInput)
Note: SQL Server 2008+ has a new data type Date with no time component that can make these types of queries more readable.
There is now more information so I'll add a more appropriate answer.
The requirements are now a stored procedure passed a Date type parameter, not DateTime, and the desire is to return rows from a table based on criterion against a DateTime field named StartDateTime...
create procedure dbo.spGetEntriesForOneDay
#DesiredDate DateTime
as
SET NOCOUNT ON;
SET #DesiredDate = DATEADD(day, DATEDIFF(day, 0, #DesiredDate), 0)
SELECT Field1, Field2 -- see note 1
FROM dbo.TableName
WHERE StartDateTime >= #DesiredDate -- see note 2
AND StartDateTime < DATEADD(day, 1, #DesiredDate) -- see note 3
NOTE 1: Don't use * in production code, especially in a stored procedure. Besides being wasteful by returning columns you probably don't need and precluding the optimization of a covering index on a subset of the columns required you would need to recompile this stored procedure whenever the underlying table is altered in order to avoid unpredictable results.
NOTE 2: Avoid wrapping fields in functions. A field not wrapped in a function can potentially be matched by the optimizer to an index while a field wrapped in a function never will.
NOTE 3: #Martin Smith and #RedFilter are correct in that .997 precision assumes DateTime datatype forever; this approach is more future proof because is makes no assumptions of data type precision.
You're using a datetime field (I'm guessing).
Don't forget the time:
select * from tablName
where startDateTime between '2012-01-17' and '2012-01-17 23:59:59.997'
You can use the DateDiff function in the where clause. It would look like this:
select col1, col2 from tablName where DateDiff(day, startDateTime, #DesiredDate) = 0

How to make faster this statement : "paramDate Between startDate and NULL"?

This query is taking long time when endDate is null (i think that its about case statement, before case statement it was fast)
SELECT *
FROM HastaKurumlari
WHERE CONVERT(SMALLDATETIME,'21-05-2009',103)
BETWEEN startDate
AND (CASE WHEN endDate IS NULL THEN GETDATE() ELSE endDate END)
What should i use, when endDate is null to make it faster ?
Here's the query without CONVERT or CASE:
SELECT *
FROM HastaKurumlari
WHERE '21-05-2009' between startDate and IsNull(endDate,getdate())
To make sure Sql Server doens't evaluate getdate() for every row, you could cache it, although I'm pretty sure Sql Server is smart enough by default:
declare #now datetime
set #now = getdate()
SELECT *
FROM HastaKurumlari
WHERE '21-05-2009' between startDate and IsNull(endDate,#now)
Posting the query plan could help explain why the query is slow:
SET SHOWPLAN_TEXT ON
go
SELECT *
FROM HastaKurumlari
WHERE CONVERT(SMALLDATETIME,'21-05-2009',103)
BETWEEN startDate
AND (CASE WHEN endDate IS NULL THEN GETDATE() ELSE endDate END)
If it is performance critical, then perhaps just don't use null for the open end-date - use the maximum supported datetime instead (probably lots of 9s).
I'd also do the conversion separately:
DECLARE #when datetime
SET #when = CONVERT(SMALLDATETIME,'21-05-2009',103)
SELECT *
FROM HastaKurumlari
WHERE #when
BETWEEN startDate AND endDate
There is still something a bit different in the above and your original; if you can explain the intent of the GETDATE() check I might be able to tidy (read:fix) it a bit.
As a starting point, factor out GETDATE() so that its called just once, and you should see an improvement in speed.
The way you've written it you are asking for GETDATE() to be evaluated every time enddate is null.
Since GETDATE() is a non-deterministic function the query cannot be optimised and will tend to under perform.
You could try the coalesce function:
select *
from HastaKurumlari
where convert(smalldatetime, '21-05-2009', 103)
between startDate and coalesce(endDate, getdate());
The only way to be certain is to try any alternatives and view the execution plan generated for each query.

How can I compare time in SQL Server?

I'm trying to compare time in a datetime field in a SQL query, but I don't know if it's right. I don't want to compare the date part, just the time part.
I'm doing this:
SELECT timeEvent
FROM tbEvents
WHERE convert(datetime, startHour, 8) >= convert(datetime, #startHour, 8)
Is it correct?
I'm asking this because I need to know if 08:00:00 is less or greater than 07:30:00 and I don't want to compare the date, just the time part.
Thanks!
Your compare will work, but it will be slow because the dates are converted to a string for each row. To efficiently compare two time parts, try:
declare #first datetime
set #first = '2009-04-30 19:47:16.123'
declare #second datetime
set #second = '2009-04-10 19:47:16.123'
select (cast(#first as float) - floor(cast(#first as float))) -
(cast(#second as float) - floor(cast(#second as float)))
as Difference
Long explanation: a date in SQL server is stored as a floating point number. The digits before the decimal point represent the date. The digits after the decimal point represent the time.
So here's an example date:
declare #mydate datetime
set #mydate = '2009-04-30 19:47:16.123'
Let's convert it to a float:
declare #myfloat float
set #myfloat = cast(#mydate as float)
select #myfloat
-- Shows 39931,8244921682
Now take the part after the comma character, i.e. the time:
set #myfloat = #myfloat - floor(#myfloat)
select #myfloat
-- Shows 0,824492168212601
Convert it back to a datetime:
declare #mytime datetime
set #mytime = convert(datetime,#myfloat)
select #mytime
-- Shows 1900-01-01 19:47:16.123
The 1900-01-01 is just the "zero" date; you can display the time part with convert, specifying for example format 108, which is just the time:
select convert(varchar(32),#mytime,108)
-- Shows 19:47:16
Conversions between datetime and float are pretty fast, because they're basically stored in the same way.
convert(varchar(5), thedate, 108) between #leftTime and #rightTime
Explanation:
if you have varchar(5) you will obtain HH:mm
if you have varchar(8) you obtain HH:mm ss
108 obtains only the time from the SQL date
#leftTime and #rightTime are two variables to compare
If you're using SQL Server 2008, you can do this:
WHERE CONVERT(time(0), startHour) >= CONVERT(time(0), #startTime)
Here's a full test:
DECLARE #tbEvents TABLE (
timeEvent int IDENTITY,
startHour datetime
)
INSERT INTO #tbEvents (startHour) SELECT DATEADD(hh, 0, GETDATE())
INSERT INTO #tbEvents (startHour) SELECT DATEADD(hh, 1, GETDATE())
INSERT INTO #tbEvents (startHour) SELECT DATEADD(hh, 2, GETDATE())
INSERT INTO #tbEvents (startHour) SELECT DATEADD(hh, 3, GETDATE())
INSERT INTO #tbEvents (startHour) SELECT DATEADD(hh, 4, GETDATE())
INSERT INTO #tbEvents (startHour) SELECT DATEADD(hh, 5, GETDATE())
--SELECT * FROM #tbEvents
DECLARE #startTime datetime
SET #startTime = DATEADD(mi, 65, GETDATE())
SELECT
timeEvent,
CONVERT(time(0), startHour) AS 'startHour',
CONVERT(time(0), #startTime) AS '#startTime'
FROM #tbEvents
WHERE CONVERT(time(0), startHour) >= CONVERT(time(0), #startTime)
Just change convert datetime to time that should do the trick:
SELECT timeEvent
FROM tbEvents
WHERE convert(time, startHour) >= convert(time, #startHour)
if (cast('2012-06-20 23:49:14.363' as time) between
cast('2012-06-20 23:49:14.363' as time) and
cast('2012-06-20 23:49:14.363' as time))
One (possibly small) issue I have noted with the solutions so far is that they all seem to require a function call to process the comparison. This means that the query engine will need to do a full table scan to seek the rows you are after - and be unable to use an index. If the table is not going to get particularly large, this probably won't have any adverse affects (and you can happily ignore this answer).
If, on the other hand, the table could get quite large, the performance of the query could suffer.
I know you stated that you do not wish to compare the date part - but is there an actual date being stored in the datetime column, or are you using it to store only the time? If the latter, you can use a simple comparison operator, and this will reduce both CPU usage, and allow the query engine to use statistics and indexes (if present) to optimise the query.
If, however, the datetime column is being used to store both the date and time of the event, this obviously won't work. In this case if you can modify the app and the table structure, separate the date and time into two separate datetime columns, or create a indexed view that selects all the (relevant) columns of the source table, and a further column that contains the time element you wish to search for (use any of the previous answers to compute this) - and alter the app to query the view instead.
Using float does not work.
DECLARE #t1 datetime, #t2 datetime
SELECT #t1 = '19000101 23:55:00', #t2 = '20001102 23:55:00'
SELECT CAST(#t1 as float) - floor(CAST(#t1 as float)), CAST(#t2 as float) - floor(CAST(#t2 as float))
You'll see that the values are not the same (SQL Server 2005). I wanted to use this method to check for times around midnight (the full method has more detail) in which I was comparing the current time for being between 23:55:00 and 00:05:00.
Adding to the other answers:
you can create a function for trimming the date from a datetime
CREATE FUNCTION dbo.f_trimdate (#dat datetime) RETURNS DATETIME AS BEGIN
RETURN CONVERT(DATETIME, CONVERT(FLOAT, #dat) - CONVERT(INT, #dat))
END
So this:
DECLARE #dat DATETIME
SELECT #dat = '20080201 02:25:46.000'
SELECT dbo.f_trimdate(#dat)
Will return
1900-01-01 02:25:46.000
Use Datepart function: DATEPART(datepart, date)
E.g#
SELECT DatePart(#YourVar, hh)*60) +
DatePart(#YourVar, mi)*60)
This will give you total time of day in minutes allowing you to compare more easily.
You can use DateDiff if your dates are going to be the same, otherwise you'll need to strip out the date as above
You can create a two variables of datetime, and set only hour of date that your need to compare.
declare #date1 datetime;
declare #date2 datetime;
select #date1 = CONVERT(varchar(20),CONVERT(datetime, '2011-02-11 08:00:00'), 114)
select #date2 = CONVERT(varchar(20),GETDATE(), 114)
The date will be "1900-01-01" you can compare it
if #date1 <= #date2
print '#date1 less then #date2'
else
print '#date1 more then #date2'
SELECT timeEvent
FROM tbEvents
WHERE CONVERT(VARCHAR,startHour,108) >= '01:01:01'
This tells SQL Server to convert the current date/time into a varchar using style 108, which is "hh:mm:ss". You can also replace '01:01:01' which another convert if necessary.
I believe you want to use DATEPART('hour', datetime).
Reference is here:
http://msdn.microsoft.com/en-us/library/ms174420.aspx
I don't love relying on storage internals (that datetime is a float with whole number = day and fractional = time), but I do the same thing as the answer Jhonny D. Cano. This is the way all of the db devs I know do it. Definitely do not convert to string. If you must avoid processing as float/int, then the best option is to pull out hour/minute/second/milliseconds with DatePart()
I am assuming your startHour column and #startHour variable are both DATETIME; In that case, you should be converting to a string:
SELECT timeEvent
FROM tbEvents
WHERE convert(VARCHAR(8), startHour, 8) >= convert(VARCHAR(8), #startHour, 8)
below query gives you time of the date
select DateAdd(day,-DateDiff(day,0,YourDateTime),YourDateTime) As NewTime from Table
#ronmurp raises a valid concern - the cast/floor approach returns different values for the same time. Along the lines of the answer by #littlechris and for a more general solution that solves for times that have a minute, seconds, milliseconds component, you could use this function to count the number of milliseconds from the start of the day.
Create Function [dbo].[MsFromStartOfDay] ( #DateTime datetime )
Returns int
As
Begin
Return (
( Datepart( ms , #DateTime ) ) +
( Datepart( ss , #DateTime ) * 1000 ) +
( Datepart( mi , #DateTime ) * 1000 * 60 ) +
( Datepart( hh , #DateTime ) * 1000 * 60 * 60 )
)
End
I've verified that it returns the same int for two different dates with the same time
declare #first datetime
set #first = '1900-01-01 23:59:39.090'
declare #second datetime
set #second = '2000-11-02 23:56:39.090'
Select dbo.MsFromStartOfDay( #first )
Select dbo.MsFromStartOfDay( #second )
This solution doesn't always return the int you would expect. For example, try the below in SQL 2005, it returns an int ending in '557' instead of '556'.
set #first = '1900-01-01 23:59:39.556'
set #second = '2000-11-02 23:56:39.556'
I think this has to do with the nature of DateTime stored as float. You can still compare the two number, though. And when I used this approach on a "real" dataset of DateTime captured in .NET using DateTime.Now() and stored in SQL, I found that the calculations were accurate.
TL;DR
Separate the time value from the date value if you want to use indexes in your search (you probably should, for performance). You can: (1) use function-based indexes or (2) create a new column for time only, index this column and use it in you SELECT clause.
Keep in mind you will lose any index performance boost if you use functions in a SQL's WHERE clause, the engine has to do a scan search. Just run your query with EXPLAIN SELECT... to confirm this. This happens because the engine has to process EVERY value in the field for EACH comparison, and the converted value is not indexed.
Most answers say to use float(), convert(), cast(), addtime(), etc.. Again, your database won't use indexes if you do this. For small tables that may be OK.
It is OK to use functions in WHERE params though (where field = func(value)), because you won't be changing EACH field's value in the table.
In case you want to keep use of indexes, you can create a function-based index for the time value. The proper way to do this (and support for it) may depend on your database engine. Another option is adding a column to store only the time value and index this column, but try the former approach first.
Edit 06-02
Do some performance tests before updating your database to have a new time column or whatever to make use of indexes. In my tests, I found out the performance boost was minimal (when I could see some improvement) and wouldn't be worth the trouble and overhead of adding a new index.

What's a good way to check if two datetimes are on the same calendar day in TSQL?

Here is the issue I am having: I have a large query that needs to compare datetimes in the where clause to see if two dates are on the same day. My current solution, which sucks, is to send the datetimes into a UDF to convert them to midnight of the same day, and then check those dates for equality. When it comes to the query plan, this is a disaster, as are almost all UDFs in joins or where clauses. This is one of the only places in my application that I haven't been able to root out the functions and give the query optimizer something it can actually use to locate the best index.
In this case, merging the function code back into the query seems impractical.
I think I am missing something simple here.
Here's the function for reference.
if not exists (select * from dbo.sysobjects
where id = object_id(N'dbo.f_MakeDate') and
type in (N'FN', N'IF', N'TF', N'FS', N'FT'))
exec('create function dbo.f_MakeDate() returns int as
begin declare #retval int return #retval end')
go
alter function dbo.f_MakeDate
(
#Day datetime,
#Hour int,
#Minute int
)
returns datetime
as
/*
Creates a datetime using the year-month-day portion of #Day, and the
#Hour and #Minute provided
*/
begin
declare #retval datetime
set #retval = cast(
cast(datepart(m, #Day) as varchar(2)) +
'/' +
cast(datepart(d, #Day) as varchar(2)) +
'/' +
cast(datepart(yyyy, #Day) as varchar(4)) +
' ' +
cast(#Hour as varchar(2)) +
':' +
cast(#Minute as varchar(2)) as datetime)
return #retval
end
go
To complicate matters, I am joining on time zone tables to check the date against the local time, which could be different for every row:
where
dbo.f_MakeDate(dateadd(hh, tz.Offset +
case when ds.LocalTimeZone is not null
then 1 else 0 end, t.TheDateINeedToCheck), 0, 0) = #activityDateMidnight
[Edit]
I'm incorporating #Todd's suggestion:
where datediff(day, dateadd(hh, tz.Offset +
case when ds.LocalTimeZone is not null
then 1 else 0 end, t.TheDateINeedToCheck), #ActivityDate) = 0
My misconception about how datediff works (the same day of year in consecutive years yields 366, not 0 as I expected) caused me to waste a lot of effort.
But the query plan didn't change. I think I need to go back to the drawing board with the whole thing.
This is much more concise:
where
datediff(day, date1, date2) = 0
You pretty much have to keep the left side of your where clause clean. So, normally, you'd do something like:
WHERE MyDateTime >= #activityDateMidnight
AND MyDateTime < (#activityDateMidnight + 1)
(Some folks prefer DATEADD(d, 1, #activityDateMidnight) instead - but it's the same thing).
The TimeZone table complicates matter a bit though. It's a little unclear from your snippet, but it looks like t.TheDateInTable is in GMT with a Time Zone identifier, and that you're then adding the offset to compare against #activityDateMidnight - which is in local time. I'm not sure what ds.LocalTimeZone is, though.
If that's the case, then you need to get #activityDateMidnight into GMT instead.
where
year(date1) = year(date2)
and month(date1) = month(date2)
and day(date1) = day(date2)
Make sure to read Only In A Database Can You Get 1000% + Improvement By Changing A Few Lines Of Code so that you are sure that the optimizer can utilize the index effectively when messing with dates
this will remove time component from a date for you:
select dateadd(d, datediff(d, 0, current_timestamp), 0)
Eric Z Beard:
I do store all dates in GMT. Here's the use case: something happened at 11:00 PM EST on the 1st, which is the 2nd GMT. I want to see activity for the 1st, and I am in EST so I will want to see the 11PM activity. If I just compared raw GMT datetimes, I would miss things. Each row in the report can represent an activity from a different time zone.
Right, but when you say you're interested in activity for Jan 1st 2008 EST:
SELECT #activityDateMidnight = '1/1/2008', #activityDateTZ = 'EST'
you just need to convert that to GMT (I'm ignoring the complication of querying for the day before EST goes to EDT, or vice versa):
Table: TimeZone
Fields: TimeZone, Offset
Values: EST, -4
--Multiply by -1, since we're converting EST to GMT.
--Offsets are to go from GMT to EST.
SELECT #activityGmtBegin = DATEADD(hh, Offset * -1, #activityDateMidnight)
FROM TimeZone
WHERE TimeZone = #activityDateTZ
which should give you '1/1/2008 4:00 AM'. Then, you can just search in GMT:
SELECT * FROM EventTable
WHERE
EventTime >= #activityGmtBegin --1/1/2008 4:00 AM
AND EventTime < (#activityGmtBegin + 1) --1/2/2008 4:00 AM
The event in question is stored with a GMT EventTime of 1/2/2008 3:00 AM. You don't even need the TimeZone in the EventTable (for this purpose, at least).
Since EventTime is not in a function, this is a straight index scan - which should be pretty efficient. Make EventTime your clustered index, and it'll fly. ;)
Personally, I'd have the app convert the search time into GMT before running the query.
You're spoilt for choice in terms of options here. If you are using Sybase or SQL Server 2008 you can create variables of type date and assign them your datetime values. The database engine gets rid of the time for you. Here's a quick and dirty test to illustrate (Code is in Sybase dialect):
declare #date1 date
declare #date2 date
set #date1='2008-1-1 10:00'
set #date2='2008-1-1 22:00'
if #date1=#date2
print 'Equal'
else
print 'Not equal'
For SQL 2005 and earlier what you can do is convert the date to a varchar in a format that does not have the time component. For instance the following returns 2008.08.22
select convert(varchar,'2008-08-22 18:11:14.133',102)
The 102 part specifies the formatting (Books online can list for you all the available formats)
So, what you can do is write a function that takes a datetime and extracts the date element and discards the time. Like so:
create function MakeDate (#InputDate datetime) returns datetime as
begin
return cast(convert(varchar,#InputDate,102) as datetime);
end
You can then use the function for companions
Select * from Orders where dbo.MakeDate(OrderDate) = dbo.MakeDate(DeliveryDate)
Eric Z Beard:
the activity date is meant to indicate the local time zone, but not a specific one
Okay - back to the drawing board. Try this:
where t.TheDateINeedToCheck BETWEEN (
dateadd(hh, (tz.Offset + ISNULL(ds.LocalTimeZone, 0)) * -1, #ActivityDate)
AND
dateadd(hh, (tz.Offset + ISNULL(ds.LocalTimeZone, 0)) * -1, (#ActivityDate + 1))
)
which will translate the #ActivityDate to local time, and compare against that. That's your best chance for using an index, though I'm not sure it'll work - you should try it and check the query plan.
The next option would be an indexed view, with an indexed, computed TimeINeedToCheck in local time. Then you just go back to:
where v.TheLocalDateINeedToCheck BETWEEN #ActivityDate AND (#ActivityDate + 1)
which would definitely use the index - though you have a slight overhead on INSERT and UPDATE then.
I would use the dayofyear function of datepart:
Select *
from mytable
where datepart(dy,date1) = datepart(dy,date2)
and
year(date1) = year(date2) --assuming you want the same year too
See the datepart reference here.
Regarding timezones, yet one more reason to store all dates in a single timezone (preferably UTC). Anyway, I think the answers using datediff, datepart and the different built-in date functions are your best bet.