AMQP AmqpBinding IIS/WAS problems? - wcf

The setup at the current employer has one set of back office functions on a Java platform and another group of functions on two separate .NET-based platforms. There is no overall architect.
The Java guys decided to go for Apache QPID and AMQP for messaging, presumably amongst themselves, with the .NET systems and other external systems.
.NET architecture involves WCF services hosted in IIS/WAS and Windows Server AppFabric.
Does anyone have any experience of AmqpBinding and IIS/WAS, if there are any possible pitfalls?

I think your first problem will be IIS/WAS/AppFabric because non HTTP services hosted in WAS have additional requirements for infrastructure which consists of additional process (listener) running usually as as a windows service and communicating with worker process. This process is responsible for receiving and sending messages and allows service activation in WAS. I don't think that the QPID project has the listener process already created. You will most probably have to implement the listener yourselves - check this sample for custom UDP activator.

Related

Mule Inter - App communication in same instance

I have explored the web on MULE and got to understand that for Apps to communicate among themselves - even if they are deployed in the same Mule instance - they will have to use either TCP, HTTP or JMS transports.
VM isn't supported.
However I find this a bit contradictory to ESB principles. We should ideally be able to define EndPoints in and ESB and connect to that using any Transport? I may be wrong.
Also since all the apps are sharing the same JVM one would expect to be able to communicate via the in-memory VM queue rather than relying on a transactionless HTTP protocol, or TCP where number of connections one can make is dependent on server resources. Even for JMS we need to define and manage another queue and for heavy usage that may have impact on performances. Though I agree if we have distributed and clustered systems may be HTTP or JMS will be only options.
Is there any plan to incorporate VM as a inter-app communication protocol or is there any other way one Flow can communicate with another Flow Endpoint but in different app?
EDIT : - Answer from Mulesoft
http://forum.mulesoft.org/mulesoft/topics/concept_of_endpoint_and_inter_app_communication
Yes, we are thinking about inter-app communication for a future release.
Still is not clear when we are going to do it but we have a couple of ideas on how we want this feature to behave. We may create a server level configuration in which you can define resources to use in all your apps. There you would be able to define a VM connector and use it to send messages between apps in the same server.
As I said, this is just an idea.
Regarding the usage of VM as inter-app communication, only MuleSoft can answer if VM will have a future feature or not.
I don't think it's contradictory to the ESB principle. The "container" feature is pretty well defined in David A Chappell's "Enterprise Service Bus book" chapter 6. The container should try it's best to keep the applications isolated.
This will provide some benefits like "independently deployable integration services" (same chapter), easier clusterization, and other goodies.
You should approach same VM inter-app communications as if they where between apps placed in different servers.
Seems that Mule added in 3.5 version, a feature to enable communication between apps deployed in the same server. But sharing a VM connector is only available in the Enterprise edition.
Info:
http://www.mulesoft.org/documentation/display/current/Shared+Resources#SharedResources-DefiningDomains
Example:
http://blogs.mulesoft.org/optimize-resource-utilization-mule-shared-resources/

How to connect to ActiveMQ on startup with WCF and IIS

What is the best way to combine a single instance WCF service that uses ActiveMQ and runs within IIS/AppFabric?
Our Services need to support both HTTP transports and ActiveMQ (listening and sending messages). We've elected not to use MSMQ, and will use Spring.Net.NMS. The fundamental issue I have now is that ActiveMQ needs to connect to the queue(s) at startup and remain connected, but WAS is getting in the way with it's message-activation feature. If the service is not activated until a message arrives (HTTP/MSMQ, etc) then there is no trigger to have the connection to AMQ occur.
I know I can disable the recycling behavior, and I know I can do self-hosting with a Windows Service. But I want to take advantage of the monitoring and other features in AppFabric. I've already been down the route with IServiceBehavior and will use that for other nice things. But that interface is not called until a (non-AMQ) message arrives. So it won't work for this. What I was hoping for was something along the line of how ServletContextListeners work in Java, where you get both the start up and shutdown events. But it seems no such thing exists in WAS... it is driven only by messages arriving.
I've scoured every inch of web info for 3 days and the only thing I came across was to use a static class construction (C#) trick as the trigger. That's a hack, but i can live with it. It still leaves the issue of cleanly shutting down, which I can figure out later.
Anyone have a solid solution to this?
The direct WCF support for ActiveMQ that Ladislav mentions is still being supported. There just hasn't been an official release for the module in a while. However, you can still get the latest version of it from the 1.5.x branch or trunk and compile it yourself.
1.5.x branch for use with Apache.NMS 1.5.0:
https://svn.apache.org/repos/asf/activemq/activemq-dotnet/Apache.NMS.WCF/branches/1.5.x/
Check out instructions:
http://activemq.apache.org/nms/source.html
There was direct WCF support for ActiveMQ but I guess it is not developed anymore. Your problem actually is the IIS / WAS (provides hosting for non-http protocols) hosting architecture. Services in WAS are always activated when message arrives - there is no global startup. The reason for this is that WAS hosting expects that there is separate process (windows service) running the listener all the time and this process has adapter which calls WAS and uses message level activation. I guess you don't have such process for ActiveMQ and because of that you will have trouble to use ActiveMQ endpoint hosted in WAS. Developing such listener can be challenging task (example for UDP).
Creating custom listener can be probably avoided by using IIS 7.5 / AppFabric auto start feature. There is also not very well documented way to run the code when the application starts.

Best host on Windows for UI-less processes

We're planning a system running on Windows/.Net 3.5 that has a number of "services" that need to run in the background. Some will be active all of the time, but some will only be called occassionally and can be stood-up on demand.
As far as I can see, my options are:
Windows Services - always running(?)
IIS hosted something - called on demand
COM+/ .Net Enterprise Sevices - most complex option, but most powerful?
Distributed transactions is not a requirement, these are mainly computation engines, rather than transaction processors.
Does anyone have any experience of working with all of these and what further pros & cons can be claimed for each technology?
EDIT
Is suppose there are multiple ways of hosting code in IIS, web services, WCF (as pointed out below), any others? Relative pros/cons?
WCF feels like the right way to go. There are still many choices to make. WCF provides a number of communication mechanisms and hosting environments:
WCF combines the following technologies under one set of APIs-
ASMX;
WSE;
Remoting;
COM+;
MSMQ.
So for instance you can use persistent messages from MSMQ for occassionaly connected clients or standard XML encoding SOAP messages over an HTTP transport layer. You can also use new features in 3.5 like binary encoding of XML or JSON encoding over HTTP.
Hosting environments include:
Console applications
Windows services
WCF services inside IIS 7.0
and on Windows Vista or Windows Server 2008 you can use WAS (Windows Activation Services) to host WCF services.
Different hosting environments have pros and cons. I suggest you look at MSDN for more details (e.g. http://msdn.microsoft.com/en-us/library/bb332338.aspx).
Because WCF encompasses a lot of functionality it is more difficult to learn than any one of the technologies it replaces. I still think it pays for itself in the long run.
It depends on what the software will do, and how (and if) users or systems need to interact with it. Depending on those things, there may be one more, often overlooked, option: set it up as a scheduled task. This is often a very good alternative to a windows service, if the software is of the kind that will act on certain time intervals (check for a change in a database, act on the changed data and send it somewhere, for instance).
If you will have other systems talking directly to your software, I would imagine that a WCF application hosted in IIS would be a rather straighforward way. We use both those approaches in my current assignment; WCF services for looking up and storing data, and scheduled tasks for data calculations that run on a regular basis.
The scheduled task has one upside compared to the others in one specific field; it uses system resources only when running.
You mentioned starting up a process "on demand". WAS - Windows Activation Service, or sometimes called Windows Process Activation Servvice, though it is never abbreviated "WPAS" - is the thing inside Windows that provides on-demand process activation. The way it works - when a message arrives, WAS can start a worker process to handle the message. WAS was, prior to IIS7, fairly tightly integrated into IIS. It was used primarily to activate processes that did web work - like an ASP.NET worker process. With IIS7, WAS is generalized so that it can activate worker processes based on non-HTTP as well as HTTP messages. If you write your app to receive messages through WCF, you can get activation essentially "for free". That applies if it is HTTP, TCP, MSMQ; SOAP or otherwise.
The key thing with this on-demand startup though, is that it is tied to the communication. In fact the process lifecycle model for WAS is tied to communication as well. By default if there are no incoming messages after a while, the process will be shut down by WAS. That may or may not be what you want.
As for process hosting - COM+ offers a hosting environment but it is primarily intended for use as a host for processes that communicate. This may not be the perfect fit for you.
If you have compute engines, you may just want to run a Windows Service. A service like that can be started and stopped either administratively or programmatically. In the latter case, you could imagine a WAS-activated worker process programmatically starting a windows service.
You could also imagine writing a simple Windows Service that watches a location (filesystem, message queue, etc) for a message, and when that file or message arrives, the Windows Service starts up a compute engine process, which itself is NOT a Windows Service, but is just a process.
Speaking of MSMQ - That is basically the same model as MSMQ triggers. You can configure MSMQ to start a process when a message arrives on a particular queue.
There are lots of options.

Why is WCF so important and in what cases is it used?

I understand to an extent that it helps applications communicate regardless of their location. Why is it important and what is an example of a real-world use of WCF?
WCF is a generic communication mechanism that allows you to setup generic client/host communication between two parties. The neat thing about WCF is that is allows you to configure service properties such as transport (http/pipes/tcp/Tibco EMS), security models (any of the W3C standards), compression, encoding, timeouts, etc, without changing ANY code. That is powerful. Best of all, you can configure it so that you can have a service in C# and a client in Java (or any other language or the other way around), as long as they both talk using the same mechanisms.
You can create a standard HTTP SOAP web service using WCF and one day decide to switch it to use the faster named pipes for local communication. You can create web services that talk over TibcoEMS and have easy failover on the queue level. You can create a file streaming web service that distributes all kinds of images/videos to your application.
Here Are some brain dump i think might be useful to understand the whole scenario.
Reason of Creating WCF : Background
Modern Application[Distributed Application] development we use different architechtures and technologies for communication
i.e:
COM+
.NET Enterprise Services
MSMQ
.NET Remoting
Web Services
As there are various technologies. they all have different architechtures. so learning all them are tricky and tedious.
one need to focus on each technologies to develop rather than the application business logic
so microsoft unifies the capabilities into single, common, general service oriented programming model for Communication. WCF provides a common approach using a common API which developers can focus on their application rather than on communication protocol.
Now-a-days we call it WCF.
N.B: image collected from - http://www.codeproject.com/Articles/255114/Windows-Communication-Foundation-Basics
What Exactly WCF Service Stands For?
WCF lets you asynchronus messages transform one service endpoint to another.
The Message Can be simple as
A Single Character
A word
sent as XML
complex data structure as a stream of binary data
Windows Communication Foundation(WCF) supports multiple language & platforms.
WCF Provides you a runtime environment for your services enabling you to expose CLR types as Services and to consume other Services as CLR Types.
A few sample scenarios include:
A secure service to process business transactions.
A service that supplies current data to others, such as a traffic report or other monitoring service.
A chat service that allows two people to communicate or exchange data in real time.
A dashboard application that polls one or more services for data and presents it in a logical presentation.
Exposing a workflow implemented using Windows Workflow Foundation as a WCF service.
A Silverlight application to poll a service for the latest data feeds.
Why on Earth We Should Use WCF?
from a Code Project Article, thanks to #Mehta Priya I found the following Scenarios to illustrate the concept. Let us consider two Scenario:
The first client is using java App to interact with our Service. So for interoperability this client wants the messages in XML format and the Protocol to be HTTP.
The Second client uses .NET so far better performance this clients wants messages in binary format and the protocol to be TCP.
Without WCF Services
now for the stated scenarios if we don't use WCF then what will happen let's see with the following images:
Scenario 1 :
Scenario 2:
These are two different technologies and have completely differently programming models. So the developers have to learn different technologies
so to unify & bring all technologies under one roof. Microsoft has come with a new programming model called WCF.
How WCF Make things easy ?
one implement a service and he/she can configure as many end points as it required to support all the client needs .
To support the above 2 client requirements
-we would configure 2 end points
-we can specify the protocols and message formats that we want to use in the end point of configuration
References:
WCF : What , Why and When https://vishalnayan.wordpress.com/2010/12/31/wcf-what-why-when/
Why we use WCF Service? http://www.codeproject.com/Tips/815742/Why-We-Use-WCF-Service-and-Sample-of-WCF-Service
What Is Windows Communication Foundation https://msdn.microsoft.com/en-us/library/ms731082(v=vs.110).aspx
Windows Communication Foundation Basics http://www.codeproject.com/Articles/255114/Windows-Communication-Foundation-Basics
There's little to add to the responses so far, especially the one from "siz".
One thing to add is that WCF is the current way to do web services on the .NET platform. It's not the "new" way, it's the current way. ASMX web services are the old and just barely maintained way. One Microsoft employee has publicly stated that only critical security fixes will be made to the ASMX platform, so if you intend for your services to be useful more than a year from now, don't use ASMX.
In addition to the typical "web service" use cases, WCF handles atypical cases, like binary communication over named pipes, message queues, etc. To a very large extent, the service you write to support something simple like SOAP over SSL can also support these other protocols, with no changes to the code.
To answer the "real world" bit, I'm just finishing up a dispatch system by which a Visual Basic 6.0/access alarm receiver, a WPF/SQL ERP system and an iPhone application all share information to schedule and execute jobs.
Essentially the use case is where you want two separate applications to talk to each other somehow and their locations are unknown (could be same machine (but different application domain), same network or on the other side of the internets)
You can easily embed it into a Windows Forms application. That was a nice thing to discover. It is so much easier than .NET Remoting too.
There are a number of reasons why it is advantageous over classic ASP.NET web services (.asmx).
A couple of these off the top of my head are:
The ability to have multiple bindings for the same service call means the message doesn't have to serialise into XML and back if you simply want to communicate inside a web farm.
The way contracts are defined is much more forgiving when it comes to multiple versions of the same contract.

What are the advantages of using WCF over frameworks like MassTransit or hand written MSMQ client?

I am looking at using MSMQ as a solution to do asynchronous execution in my upcoming project. I want to know the differences between using WCF and frameworks like MassTransit or even hand written MSMQ client to place/read task off MSMQ.
Basically the application will be several websites (internal through LAN or external through the Internet) reading/writing data through a service layer (be it WCF or normal web service). Then this service layer will do one of two things: 1. write data to database 2. and/or trigger the background process by placing a message in the queue. 3. obviously it can also retrieve data from database. The little agent (a windows service) on the other side of the queue will monitor the queue and execute based on the task command.
This architecture will be quite easy to scale (add more queues and agents) and easy to implement compared to RPC or distributed execution or whatever. And the agent processing doesn’t need to be real time. And the agent and service layer are separate applications except they share the common domain objects and Repositories etc.
What do you think? Architecture suggestions for the above requirements are welcomed. Thank you!
WCF adds an abstraction over MSMQ. In fact, once you define compatible contracts (operations must be OneWay), you can switch out MSMQ in the config, transparently. (For instance, you could switch to normal HttpWS or a NetTcp binding.)
You should evaluate the other WCF benefits, like security and so on, to see how those fit in with your needs. Again, they should be reasonably transparent of the fact you're using MSMQ underneath. For instance, adding SOAP security and so on should "just work", independent of using MSMQ.
(Although, IIRC, you still need to login to the desktop on each machine that uses MSMQ, with the service account that will use MSMQ, to generate the certificate in the machines local profile. And then, it doesn't work very well from IIS6, since user profiles aren't loaded. A real pain in general, but nothing to do with WCF specifically.)
Apart from that:
Have you looked at SQL Server Service Broker? After using MSMQ + WCF and SSSB, I think that SSSB is vastly easier to configure and manage. SSSB works with T-SQL commands over any SQL client (I use it from Mono, on Linux, with transactions). It'll also give you transactional send/receive, even remotely (I think MSMQ 4 now allows this). It really takes a lot of the pain away from message queuing, and if you're using SQL Server already...
SSSB is often overlooked since the SQL Management Studio doesn't have GUI designers for it all, but it isn't hard and is a great option. The one downside is that if you want local send capability (i.e., queue message when network is down), you'll need to run a local SQL Express instance.
Your architecture seems sound and reasonable. However you should consider using the WCF net MSMQ transport over hand coded MSMQ classes. WCF wraps this common functionality into a nice programming model. Also I believe there is some improvements in the protocol used by wcf compared to basic System.Messaging
Have a look at the value-add over plain MSMQ:
http://readthedocs.org/docs/masstransit/en/latest/overview/valueadd.html
In summary, you get a lot of messaging concepts clearly presented in the API with MassTransit; to an extent you wouldn't have if you hand-coded it or used WCF.