Static NSMutableDictionary is "just leaking" - objective-c

Here's a simple class:
#import "One.h"
#import "Two.h"
#implementation DataFileRegistrar
static NSMutableDictionary *elementToClassMapping;
+ (void)load
{
[self registerClass:[One class] forElement:#"one"];
[self registerClass:[Two class] forElement:#"two"];
}
+ (void)registerClass:(Class)class forElement:(NSString *)element
{
if (!elementToClassMapping) {
elementToClassMapping = [NSMutableDictionary dictionaryWithObject:class forKey:element];
} else {
[elementToClassMapping setValue:class forKey:element];
}
}
+ (id)classForElement:(NSString *)element
{
return [elementToClassMapping valueForKey:element];
}
#end
The problem is this compiler message:
objc[7172]: Object 0x6840720 of class __NSCFDictionary autoreleased with no pool in place - just leaking - break on objc_autoreleaseNoPool() to debug
Any ideas what's going on?
Basically, I want to have a simple class with a couple of class methods and one static dictionary. It would be always used without instantiation. I want to use it for a couple of things right after the app starts and then I want to release its memory. I thought ARC can take care of this.

You should not use autoreleased objects on static variables.
Change line...
elementToClassMapping = [NSMutableDictionary dictionaryWithObject:class forKey:element];
to
elementToClassMapping = [[NSMutableDictionary alloc] initWithObjects:[NSArray arrayWithObject:class] forKeys:[NSArray arrayWithObject:element]];
And also do not call your + (void)registerClass:(Class)class forElement:(NSString *)element from a 2nd thread without creating a autorelease pool.

Your class' +load is calling methods which calls autorelease.
Your class is loaded before main.
You can explicitly create an autorelease pool in +load:
+ (void)load
{
#autoreleasepool {
[self registerClass:[One class] forElement:#"one"];
[self registerClass:[Two class] forElement:#"two"];
}
}
However, it's often better to guarantee the order of your program's initialization and load explicitly before creating any threads in main:
int main(int argc, const char * argv[]) {
#autoreleasepool {
[DataFileRegistrar initializeStaticStuff];
...

what are you doing there is putting the dictionary on the stack (which is frankly stupid, because you have so many ways not to do that) and it leaks because it never gets deallocated from the stack.
NSDictionary is created to be used with autorelease pool (and yes..i know there are some cases where is better to use a static one but those cases are very very rare )
declare NSMutableDictionary *elementToClassMapping; in interface and everything will work just fine

Related

Clarifications needed for a crash using NSArray, blocks and Manual Reference Counting

I need some clarifications on a crash I'm encountering using NSArray, blocks and Manual Reference Counting. My goal is to store blocks on a collection (NSArray in this case) in order to reuse them in the future.
I've setup a small sample to replicate the issue. In particular, I have a class Item that looks like the following:
#import <Foundation/Foundation.h>
typedef void(^MyBlock)();
#interface Item : NSObject
- (instancetype)initWithBlocks:(NSArray*)blocks;
#end
#import "Item.h"
#interface Item ()
#property (nonatomic, strong) NSArray *blocks;
#end
#implementation Item
- (instancetype)initWithBlocks:(NSArray*)blocks
{
self = [super init];
if (self) {
NSMutableArray *temp = [NSMutableArray array];
for (MyBlock block in blocks) {
[temp addObject:[[block copy] autorelease]];
}
_blocks = [temp copy];
}
return self;
}
The usage is described below (I'm using in the app delegate).
- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
__block typeof(self) weakSelf = self;
MyBlock myBlock1 = ^() {
[weakSelf doSomething1];
};
MyBlock myBlock2 = ^() {
[weakSelf doSomething1];
};
NSArray *blocks = #[myBlock1, myBlock2];
// As MartinR suggested the code crashes even
// if the following line is commented
Item *item = [[Item alloc] initWithBlocks:blocks];
}
If I run the app, it crashes with an EXC_BAD_INSTRUCTION (note that I've already enabled All Exceptions breakpoints). In particular, the app stops in the main.
int main(int argc, const char * argv[]) {
return NSApplicationMain(argc, argv);
}
Note: As suggested by Ken Thomases, if you use bt command on llvm console, you are to see the back trace. In this case it shows the following:
-[__NSArrayI dealloc]
If I comment the [weakSelf doSomethingX]; it works without crashes (it does not mean that is correct).
Modifying the code a little bit like the following, all runs ok.
// Item does not do anymore the copy/autorelease dance
// since used in the declaration of the blocks
- (instancetype)initWithBlocks:(NSArray*)blocks
{
self = [super init];
if (self) {
_blocks = [blocks retain];
}
return self;
}
and
__block typeof(self) weakSelf = self;
MyBlock myBlock1 = [[^() {
[weakSelf doSomething1];
} copy] autorelease];
MyBlock myBlock2 = [[^() {
[weakSelf doSomething1];
} copy] autorelease];
NSArray *blocks = #[myBlock1, myBlock2];
Item *item = [[Item alloc] initWithBlocks:blocks];
What is the point here? I think I'm missing something but I don't know what.
Update 1
Ok. I'll try to recap my thoughts based on the comments with #Martin R and #Ken Thomases.
A block, by default, is created on stack if a copy message is not sent to it (ARC does this for us) in order to move it on the heap. So, the situation in this case is the following. I create an autorelease array and I add two blocks where retain is called in a implicit manner. When the applicationDidFinishLaunching method finishes is execution, the blocks, since created on the stack (they are automatic variables) disappear. In a later moment, the array called blocks will be released since has been marked as autorelease. So, it will crash since it will send a release object to blocks that do not exist anymore.
So, my question is the following: What does it mean to send a retain message to a block that is on the stack? Why the array is the source of the crash (see the back trace)? In other words, since a block is on the stack, will it bump the retain count of it? And when it goes out of scope? In addiction, why if I comment the [weakSelf doSomething1] line the code works without problems? Not very clear to me this part.
You are sticking an object from the stack into an autoreleased array. BOOM ensues.
Consider:
typedef void(^MyBlock)();
int main(int argc, char *argv[]) {
#autoreleasepool {
NSObject *o = [NSObject new];
MyBlock myBlock1 = ^() {
[o doSomething1];
};
NSLog(#"o %p", o);
NSLog(#"b %p", myBlock1);
NSLog(#"b retain %p", [myBlock1 retain]);
NSLog(#"b copy %p", [myBlock1 copy]);
NSLog(#"s %p", ^{});
sleep(1000000);
}
}
Compiled/run as -i386 (because the #s are smaller and more obvious):
a.out[11729:555819] o 0x7b6510f0
a.out[11729:555819] b 0xbff2dc30
a.out[11729:555819] b retain 0xbff2dc30
a.out[11729:555819] b copy 0x7b6511a0
a.out[11748:572916] s 0x67048
Since the object is at 0x7b, we can assume that is the heap. 0xb is really high memory and, thus, the stack.
The retain doesn't cause a copy (because doing so would have invariably led to leaks) and retain on a stack based object is meaningless.
If you change the [o doSomething1]; to [nil doSomething1]; then that becomes a static block and that lives in readonly mapped memory (readonly-executable pages from the mach-o's TEXT segment) and, thus, there is no allocation to deallocate and retain/release/autorelease are no-ops.
As you can see, the static block ended up around 0x67048 (this number may change from run to run, btw, for a variety of reasons. Low in memory.
In fact, because of the sleep(), we can run vmmap against the a.out process and see:
==== Writable regions for process 11772
REGION TYPE START - END [ VSIZE] PRT/MAX SHRMOD REGION DETAIL
__DATA 00067000-00068000 [ 4K] rw-/rwx SM=ZER /tmp/a.out
That is, the static block was in the first 4K segment of mapped writable regions from the mach-o file. Note that this doesn't mean the code is in that writable region (SECURITY HOLE if it were). The code is in the TEXT segment mapped into the readable regions.

Setting static inside its method call (with singleton pattern)

is smth. like this legit? it compiles and looks running ok, but is it ok? (aim setting myself to nil, inside my method)
i mean iam setting myself static to nil, in a method
static MyClass * StaticInstance = nil;
+ (MyClass *) sharedStaticInstance
{
if (StaticInstance == nil) {
StaticInstance = [[MyClass alloc] init];
}
return StaticInstance;
}
- (void) killStaticSelf
{
StaticInstance = nil;
}
and later
[[MyClass sharedStaticInstance] doSmth]; // our static instance is created
[[MyClass sharedStaticInstance] killStaticSelf]; // now its killed inside itself method
[[MyClass sharedStaticInstance] doSmth]; // now it should recreate again
Its having a memory leak.
You should dealloc the StaticInstance first and then you should assign nil to it.
Yes, that's how it's done. I use the sharedStaticInstance often, though I don't usually create a destructor it's probably a good idea, as long as all references to the shared instance in this class pass through sharedStaticInstance first.
EDIT: I just noticed that killStaticSelf is an instance method - it should be a class method I believe, but there shouldn't be any issue either way.
[MyClass killStaticSelf];
Even as the function stack closes, since sending messages to nil doesn't cause issues in Objective-C.
your sharedInstance method is not thread safe so you could get a race condition in this code:
if (StaticInstance == nil) {
StaticInstance = [[MyClass alloc] init];
}
- (void) killStaticSelf
{
StaticInstance = nil;
}
the above code has a leak since you do not provide StaticInstance as a retain property (apparently). You could instead wrap your singleton code in a property but that uses the same static instance.
It's legit, but you need to release the variable before setting it to nil, to avoid memory leaks if you're not using ARC.
Though comprehension of such singleton usage logic is beyond my humble brain abilities.

Singleton in iOS 5?

Hi I had an implementation previous versions of iOS for a singleton as follows:
.h file
#interface CartSingleton : NSObject
{
}
+(CartSingleton *) getSingleton;
.m file
#implementation CartSingleton
static CartSingleton *sharedSingleton = nil;
+(CartSingleton *) getSingleton
{
if (sharedSingleton !=nil)
{
NSLog(#"Cart has already been created.....");
return sharedSingleton;
}
#synchronized(self)
{
if (sharedSingleton == nil)
{
sharedSingleton = [[self alloc]init];
NSLog(#"Created a new Cart");
}
}
return sharedSingleton;
}
//==============================================================================
+(id)alloc
{
#synchronized([CartSingleton class])
{
NSLog(#"inside alloc");
NSAssert(sharedSingleton == nil, #"Attempted to allocate a second instance of a singleton.");
sharedSingleton = [super alloc];
return sharedSingleton;
}
return nil;
}
//==============================================================================
-(id)init
{
self = [super init];
}
However on the web I see people have implemented the Singleton design pattern using this code:
+ (id)sharedInstance
{
static dispatch_once_t pred = 0;
__strong static id _sharedObject = nil;
dispatch_once(&pred, ^{
_sharedObject = [[self alloc] init]; // or some other init method
});
return _sharedObject;
}
Could someone who is experience please guide me.
Im a newbie and thoroughly confused between the old iOS implementation of the Singleton and the new one and which is the correct one?
Thanks a lot
Strictly speaking, you must use:
+ (MySingleton*) instance {
static dispatch_once_t _singletonPredicate;
static MySingleton *_singleton = nil;
dispatch_once(&_singletonPredicate, ^{
_singleton = [[super allocWithZone:nil] init];
});
return _singleton;
}
+ (id) allocWithZone:(NSZone *)zone {
return [self instance];
}
Now you guarantee that one cannot call alloc/init and create another instance.
Explanation: The instance method is at the class level and is your main access method to get a reference to the singleton. The method simply uses the dispatch_once() built-in queue that will only execute a block once. How does the runtime guarantee that the block is only executed once? Using the predicate you supply (of type dispatch_once_t). This low-level call will guarantee that even if there are multiple threads trying to call it, only one succeeds, the others wait until the first one is done and then returns.
The reason we override allocWithZone is because alloc calls allocWithZone passing nil as the zone (for the default zone). To prevent rogue code from allocating and init-ializing another instance we override allocWithZone so that the instance passed back is the already initialized singleton. This prevents one from creating a second instance.
The dispatch_once snippet is functionally identical to other one. You can read about it at http://developer.apple.com/library/mac/#documentation/Darwin/Reference/Manpages/man3/dispatch_once.3.html.
This is what I use for singletons:
+ (MySingleton*) getOne {
static MySingleton* _one = nil;
#synchronized( self ) {
if( _one == nil ) {
_one = [[ MySingleton alloc ] init ];
}
}
return _one;
}
NOTE: In most cases, you do not even need to use #synchronized (but it is safe this way).
A singleton is a special kind of class where only one instance of the class exists for the current process. (In the case of an iPhone app, the one instance is shared across the entire app.) Some examples in UIKit are [UIApplication sharedApplication] (which returns the sole instance of the application itself), and [NSFileManager defaultManager] (which returns the file manager instance). Singletons can be an easy way to share data and common methods across your entire app.
Rather than create instances of the singleton class using alloc/init, you'll call a class method that will return the singleton object. You can name the class method anything, but common practice is to call it sharedName or defaultName.
Please check a link with best answer
:http://www.idev101.com/code/Objective-C/singletons.html

NSMutableDictionary Singleton issue

I am coding Objective-C using the Cocos2D framework, and I have a singleton used for multiple purposes. One new purposes is to get and set character's "states" which are strings. I've recently made an NSDictionary for this purpose, but I have issues with the program freezing up when a method inside the singleton is called.
Here's the singleton code. I'm just leaving in the character state stuff:
.h
#interface ExGlobal : NSObject {
NSArray *charStates_keys;
NSArray *charStates_objects;
NSMutableDictionary *charStates;
}
#property(nonatomic, retain) NSMutableDictionary *charStates;
+(ExGlobal*)sharedSingleton;
- (NSString *)charState:(NSString *)charName;
- (void)set_charState:(NSString *)value forCharName:(NSString *)charName;
#end
.m
#import "ExGlobal.h"
#implementation ExGlobal
#synthesize charStates;
static ExGlobal* _sharedSingleton = nil;
+(ExGlobal*)sharedSingleton {
#synchronized([ExGlobal class]) {
if (!_sharedSingleton) {
[[self alloc] init];
}
return _sharedSingleton;
}
return nil;
}
+(id)alloc {
#synchronized([ExGlobal class]) {
NSAssert(_sharedSingleton == nil, #"Attempted to allocate a second instance of a singleton.");
_sharedSingleton = [super alloc];
return _sharedSingleton;
}
return nil;
}
-(id)init {
self = [super init];
if (self != nil) {
// initialize stuff here
exitName = #"ruinsSkyMid";
sceneChangeKind = #"reborn";
charStates = [[NSMutableDictionary alloc] init];
charStates_keys = [NSArray arrayWithObjects:#"Feathers", #"Hummus", nil];
charStates_objects = [NSArray arrayWithObjects:#"at wall", #"with Feathers", nil];
charStates = [NSMutableDictionary dictionaryWithObjects:charStates_objects forKeys:charStates_keys];
}
return self;
}
- (NSString *)charState:(NSString *)charName{
NSString *value = [charStates objectForKey:charName];
return value;
}
- (void)set_charState:(NSString *)charState forCharName:(NSString *)charName{
[charStates setObject:charState forKey:charName];
}
- (void)dealloc {
//I know it doesn't get called, but just in case
[charStates release];
[super dealloc];
}
#end
It's unclear to me what exactly the issue is when it freezes. When this happens, all I get in the console is:
Program received signal: “EXC_BAD_ACCESS”.
warning: Unable to read symbols for /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.3.5 (8L1)/Symbols/Developer/usr/lib/libXcodeDebuggerSupport.dylib (file not found).
Previous frame inner to this frame (gdb could not unwind past this frame)
Previous frame inner to this frame (gdb could not unwind past this frame)
Which I'm sure doesn't help finding the issue. I found if I redefine charStates_keys, charStates_objects and charStates inside both the charState and set_charState methods, it seems to work without freezing, except set_charState does not change the state.
It isn't freezing, it is crashing. Hence the EXC_BAD_ACCESS. It looks like your Xcode installation is borked, too, as the two messages following should not happen.
Note that methods should not have _s in the name; not a cause of the problem, but a comment on following convention.
You aren't retaining charStates and that is likely the cause of the crash.
Not an answer as such but I didn't have enough space in the comments field above to post this, but it might be useful.
As bbum already said, your lack of retaining charStates is likely the problem.
If you are confused about when to retain and not retain objects there's a really good book called "Learn Objective-C on the Mac" and I know it's a Mac book but most of it applies to iPhone too. On page 171 of chapter 9 (Memory Management) it talks about the "Memory Management Rules" and how if you are confused about when to retain or not then you don't understand the simple rules of Objective C memory management.
Essentially if you create an object using new, alloc or copy, then the retain count is automatically set to 1 so the object is retained and does not require you to retain it and will require a subsequent release to deallocate.
If you create the object any other way then the object will be an autoreleased object.
Obviously these rules only apply within the standard iOS libraries and can't necessarily be applied to third party libraries.
I recommend anyone who doesn't fully understand memory management in Objective C read this book. I found highly enlightening even for my iPhone work.
Hope that helps/.

Can a C function be used as a selector in Cocoa?

I want to start a new thread using a C function, not an objective-C method. I tried
[NSThread detachNewThreadSelector: #selector(func) toTarget: nil withObject: id(data)];
where I have
void func(void *data) {
// ...
}
and data is a void *, but I get a runtime crash in objc_msgSend, called from
-[NSThread initWithTarget:selector:object:]
What can I do instead? Is it even possible?
Roll your own:
// In some .h file. #import to make the extension methods 'visible' to your code.
#interface NSThread (FunctionExtension)
+(void)detachNewThreadByCallingFunction:(void (*)(void *))function data:(void *)data;
-(id)initWithFunction:(void (*)(void *))function data:(void *)data;
#end
// In some .m file.
#implementation NSThread (FunctionExtension)
+(void)startBackgroundThreadUsingFunction:(id)object
{
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
void (*startThreadFunction)(void *) = (void (*)(void *))[[object objectForKey:#"function"] pointerValue];
void *startThreadData = (void *) [[object objectForKey:#"data"] pointerValue];
if(startThreadFunction != NULL) { startThreadFunction(startThreadData); }
[pool release];
pool = NULL;
}
+(void)detachNewThreadByCallingFunction:(void (*)(void *))function data:(void *)data
{
[[[[NSThread alloc] initWithFunction:function data:data] autorelease] start];
}
-(id)initWithFunction:(void (*)(void *))function data:(void *)data
{
return([self initWithTarget:[NSThread class] selector:#selector(startBackgroundThreadUsingFunction:) object:[NSDictionary dictionaryWithObjectsAndKeys:[NSValue valueWithPointer:function], #"function", [NSValue valueWithPointer:data], #"data", NULL]]);
}
#end
NOTE: I wrote the above code and here by place it in the public domain. (sometimes the lawyers like this kind of stuff) It is also completely untested!
You can always remove the NSAutoreleasePool bits if you can guarantee that the thread entry function also creates one... but it's harmless, has no speed penalty what-so-ever, and makes calling arbitrary C functions that much more simpler. I'd say just keep it there.
And you can use it like so:
void bgThreadFunction(void *data)
{
NSLog(#"bgThreadFunction STARTING!! Data: %p", data);
}
-(void)someMethod
{
// init and then start later...
NSThread *bgThread = [[[NSThread alloc] initWithFunction:bgThreadFunction data:(void *)0xdeadbeef] autorelease];
// ... assume other code/stuff here.
[bgThread start];
// Or, use the all in one convenience method.
[NSThread detachNewThreadByCallingFunction:bgThreadFunction data:(void *)0xcafebabe];
}
When run:
2009-08-30 22:21:12.529 test[64146:1303] bgThreadFunction STARTING!! Data: 0xdeadbeef
2009-08-30 22:21:12.529 test[64146:2903] bgThreadFunction STARTING!! Data: 0xcafebabe
Create an Objective-C class with a method that simply calls that function. Take the selector of that method and pass it to NSThread API.
Well, I'm not sure if it's possible, but keep in mind that every Objective-C method has two implicit/hidden arguments, self and _cmd. An IMP is usually typedef'd like this:
typedef id (*IMP)(id,SEL,...);
If you want to jerry-rig methods and selectors, you need to have a method that looks like that:
void func (id self, SEL _cmd, void *firstParameter);
But even after that, you need to register a selector name with the runtime, then you need to associate that selector with the method, but this is done on a class-by-class basis (i.e. classes can have different implementations of the same selector name), so you at least need to have a dummy class.
It is much, much simpler just to create a dummy class and dummy instance of that class than call the various runtime API just to get NSThread to invoke a single C function.
If you don't need NSThread stuff, you can also start a thread with direct POSIX interface.
I want to start a new thread using a C function, not an objective-C method
Then why don't you just use:
POSIX threads,
GCD?
dispatch_async_f() (man) is suited exactly for this purpose.